Skip to main content
Log in

Preparation, characterization, and formation mechanism of different biological calcium carbonate (CaCO3) induced by Bacillus mucilaginosus and Bacillus alcalophilus

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Microbial-induced calcium carbonate precipitation (MICP) is a common mineralization phenomenon in nature, which has the advantages of green and environmental protection. In this paper, Bacillus mucilaginosus and Bacillus alcalophilus were selected to study the dynamic process of MICP in alkaline solution through the changes of Ca2+ concentration, pH value, calcification rate, and Zeta potential, and then the control factors affecting the generation of biological CaCO3 were revealed. Subsequently, various characterization methods were used to explore the effects of different microbial species on the morphology, crystal polymorph, crystalline size, reflectivity, specific surface area, pore volume, and porosity of biological CaCO3, and the formation mechanism of biological CaCO3 was also analyzed carefully. The experimental results showed that microbial mineralization was the control step affecting the formation of biological CaCO3. Due to the different microbial mineralization mechanisms, the properties of biological CaCO3 were also different. Compared with the reference CaCO3, the CaCO3 induced by Bacillus mucilaginosus was mainly calcite with uniformly dispersed oblique hexahedron shape, while the CaCO3 induced by Bacillus alcalophilus was mainly vaterite with uniform spherical shape. Meanwhile, the mechanism of MICP showed that Bacillus mucilaginosus mainly promoted the production of biological CaCO3 through the microbial enzymatic action (carbonic anhydrase), while Bacillus alcalophilus mainly controlled CaCO3 precipitation through the microbial metabolic decomposition. Generally, the paper reveals the diversity of biomineralization by studying the properties and mechanisms of CaCO3 induced by different microbial species, which provides the theoretical basis for the application of MICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Song MZ, Ju TY, Meng Y, Han SY, Lin L, Jiang JG (2022) A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere 290:133229. https://doi.org/10.1016/j.chemosphere.2021.133229

    Article  CAS  Google Scholar 

  2. Yang G, Li L, Li F, Zhang C, Lyu JJ (2021) Mechanism of carbonate mineralization induced by microbes: taking Curvibacter lanceolatus strain HJ-1 as an example. Micron 140:102980. https://doi.org/10.1016/j.micron.2020.102980

    Article  CAS  Google Scholar 

  3. Zheng TW, Zhang X, Yi HH (2019) Spherical vaterite microspheres of calcium carbonate synthesized with poly (acrylic acid) and sodium dodecyl benzene sulfonate. J Cryst Growth 528:125275. https://doi.org/10.1016/j.jcrysgro.2019.125275

    Article  CAS  Google Scholar 

  4. Ahmad N, Bhatnagar S, Ali SS, Dutta R (2015) Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomed 10:7019–7030. https://doi.org/10.2147/IJN.S94479

    Article  CAS  Google Scholar 

  5. Ahmad N, Bhatnagar S, Saxena R, Iqbal D, Ghosh AK, Dutta R (2017) Biosynthesis and characterization of gold nanoparticles: kinetics, in vitro and in vivo study. Mat Sci Eng C-Mater 78:553–564. https://doi.org/10.1016/j.msec.2017.03.282

    Article  CAS  Google Scholar 

  6. Deng S, Bhatnagar S, He S, Ahmad N, Rahaman A, Gao J, Narang J, Khalifa I, Nag A (2022) Development and applications of embedded passives and interconnects employing nanomaterials. Nanomater 12(19):3284. https://doi.org/10.3390/nano12193284

    Article  CAS  Google Scholar 

  7. Rizvi SM, Hussain T, Alshammari F, Sonbol H, Ahmad N, Faiyaz SS, Kamal MA, Khafagy ES, Moin A, Abu Lila AS (2023) Nano-conversion of ineffective cephalosporins into potent one against resistant clinical uro-pathogens via gold nanoparticles. Nanomater 13(3):475. https://doi.org/10.3390/nano13030475

    Article  CAS  Google Scholar 

  8. Bi S, Ahmad N (2022) Green synthesis of palladium nanoparticles and their biomedical applications. Mater Today Proceed 62(6):3172–3177. https://doi.org/10.1016/j.matpr.2022.03.441

    Article  CAS  Google Scholar 

  9. Di Michele A, Nocchetti M, Pietrella D, Latterini L, Quaglia G, Mattu I, Padeletti G, Kaciulis S, Bolli E, Ambrogi V (2023) Ag/Ag3PO4 nanoparticle-decorated hydroxyapatite functionalized calcium carbonate: ultrasound-assisted sustainable synthesis, characterization, and antimicrobial activity. Materials 16(4):1338. https://doi.org/10.3390/ma16041338

    Article  CAS  Google Scholar 

  10. Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin SS, Minkina T, Igwegbe CA, Singh M, Kumar A (2023) Emerging application of nanotechnology for mankind. Emergent mater 6:439–452. https://doi.org/10.1007/s42247-023-00461-8

    Article  CAS  Google Scholar 

  11. Luo J, Kong FT, Ma XS (2016) Role of aspartic acid in the synthesis of spherical vaterite by the Ca(OH)2–CO2 reaction. Cryst Growth Des 16(2):728–736. https://doi.org/10.1021/acs.cgd.5b01333

    Article  CAS  Google Scholar 

  12. Zheng TW, Yi HH (2021) Formation and stabilization of vaterite aggregate grooves with aspartic acid (Asp) by bubbling CO2 into a Ca (OH)2 suspension. Cryst Res Technol 56(11):2100136. https://doi.org/10.1002/crat.202100136

    Article  CAS  Google Scholar 

  13. Hossain MS, Jahan SA, Ahmed S (2023) Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca (OH)2. Results Chem 5:100822. https://doi.org/10.1016/j.rechem.2023.100822

    Article  CAS  Google Scholar 

  14. Zheng TW, Yi HH, Zhang SY, Wang CG (2020) Preparation and formation mechanism of calcium carbonate hollow microspheres. J Cryst Growth 549:125870. https://doi.org/10.1016/j.jcrysgro.2020.125870

    Article  CAS  Google Scholar 

  15. Meydan TGS, Moosavi SS, Sabouri Z, Darroudi M (2023) Green synthesis of CaCO3 nanoparticles for photocatalysis and cytotoxicity. Bioproc Biosyst Eng 46:727–734. https://doi.org/10.1007/s00449-023-02859-4

    Article  CAS  Google Scholar 

  16. You C, Zhang Q, Jiao Q, Fu Z (2009) Supernet structures of calcium carbonate mesocrystals formed in a blend system of anionic/nonionic surfactants. Cryst Growth Des 9(11):4720–4724. https://doi.org/10.1021/cg900584s

    Article  CAS  Google Scholar 

  17. Oral ÇM, Çalışkan A, Göçtü Y, Kapusuz D, Ercan B (2020) Synthesis of calcium carbonate microspheres via inert gas bubbling for orthopedic applications. Ceram Int 46(3):3513–3522. https://doi.org/10.1016/j.ceramint.2019.10.066

    Article  CAS  Google Scholar 

  18. Rui YF, Qian CX (2021) The regulation mechanism of bacteria on the properties of biominerals. J Cryst Growth 570:126214. https://doi.org/10.1016/j.jcrysgro.2021.126214

    Article  CAS  Google Scholar 

  19. Yi HH, Zheng TW, Jia ZZ, Su T, Wang CG (2021) Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. J Cryst Growth 564:126113. https://doi.org/10.1016/j.jcrysgro.2021.126113

    Article  CAS  Google Scholar 

  20. Rui YF, Qian CX (2022) Characteristics of different bacteria and their induced biominerals. J Ind Eng Chem 115:449–465. https://doi.org/10.1016/j.jiec.2022.08.032

    Article  CAS  Google Scholar 

  21. Medina Ferrer F, Hobart K, Bailey JV (2020) Field detection of urease and carbonic anhydrase activity using rapid and economical tests to assess microbially induced carbonate precipitation. Microb biotechnol 13(6):1877–1888. https://doi.org/10.1111/1751-7915.13630

    Article  CAS  Google Scholar 

  22. e Portugal CRM, Fonyo C, Machado CC, Meganck R, Jarvis T (2020) Microbiologically induced calcite precipitation biocementation, green alternative for roads–is this the breakthrough? A critical review. J Clean Prod 262:121372. https://doi.org/10.1016/j.jclepro.2020.121372

    Article  CAS  Google Scholar 

  23. Yu XN, Qian CX, Xue B (2016) Loose sand particles cemented by different bio-phosphate and carbonate composite cement. Constr Build Mater 113:571–578. https://doi.org/10.1016/j.conbuildmat.2016.03.105

    Article  CAS  Google Scholar 

  24. Deng W, Wang Y (2018) Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Adv Civ Eng 9:1–6. https://doi.org/10.1155/2018/9590653

    Article  Google Scholar 

  25. Zhang X, Qian CX, Ma ZY, Li F (2022) Study on preparation of supplementary cementitious material using microbial CO2 fixation of steel slag powder. Constr Build Mater 326:126864. https://doi.org/10.1016/j.conbuildmat.2022.126864

    Article  CAS  Google Scholar 

  26. Li WT, Dong BQ, Yang ZX, Xu J, Chen Q, Li HX, Xing F, Jiang ZW (2018) Recent advances in intrinsic self-healing cementitious materials. Adv Mater 30:1705679. https://doi.org/10.1002/adma.201705679

    Article  CAS  Google Scholar 

  27. Seifan M, Berenjian A (2019) Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biot 103(12):4693–4708. https://doi.org/10.1007/s00253-019-09861-5

    Article  CAS  Google Scholar 

  28. Wang ZY, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen JM, Chen J (2020) Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ 708(15):135063. https://doi.org/10.1016/j.scitotenv.2019.135063

    Article  CAS  Google Scholar 

  29. Chen DL, Wang QY, Li YB, Li YD, Fan YL (2020) A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 247:125869. https://doi.org/10.1016/j.chemosphere.2020.125869

    Article  CAS  Google Scholar 

  30. Yang KL, Geng QR, Luo Y, Xie R, Sun TZ, Wang Z, Qin L, Zhao W, Liu M, Li YX, Tian J (2022) Dysfunction of FadA-cAMP signalling decreases Aspergillus flavus resistance to antimicrobial natural preservative perillaldehyde and AFB1 biosynthesis. Environ Microbiol 24(3):1590–1607. https://doi.org/10.1111/1462-2920.15940

    Article  CAS  Google Scholar 

  31. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  32. Zheng TW, Su YL, Qian CX, Zhou HY (2020) Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochem Eng J 163:107756. https://doi.org/10.1016/j.bej.2020.107756

    Article  CAS  Google Scholar 

  33. Mondal S, Ghosh AD (2019) Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Constr Build Mater 225(20):67–75. https://doi.org/10.1016/j.conbuildmat.2019.07.122

    Article  CAS  Google Scholar 

  34. Erşan YÇ, Gruyaert E, Louis G, Lors C, Belie ND, Boon N (2015) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol 6:1228. https://doi.org/10.3389/fmicb.2015.01228

    Article  Google Scholar 

  35. Zhu XJ, Wang J, Belie ND, Boon N (2019) Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation. Appl Microbiol Biot 103(21–22):8825–8838. https://doi.org/10.1007/s00253-019-10128-2

    Article  CAS  Google Scholar 

  36. Tian XQ, Zhang YC, Zhang J, Ye ZY, Lian J, Duan T, He R, Zhu WK (2020) Mineralization mechanism of mineralization bacteria on strontium crystallization of simulated radionuclides. Cryst Res Technol 55:1900133. https://doi.org/10.1002/crat.201900133

    Article  CAS  Google Scholar 

  37. Xu GJ, Li DW, Jiao BQ, Li D, Yin YJ, Lun LM, Zhao ZQ, Li S (2017) Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1. Electron J Biotechn 25:21–27. https://doi.org/10.1016/j.ejbt.2016.10.008

    Article  CAS  Google Scholar 

  38. Chen HJ, Huang YH, Chen CC, Maity PJ, Chen CY (2019) Microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea. Waste Biomass Valori 10:2887–2895. https://doi.org/10.1007/s12649-018-0324-8

    Article  CAS  Google Scholar 

  39. Zheng TW, Qian CX (2020) Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochem 91:271–281. https://doi.org/10.1016/j.procbio.2019.12.018

    Article  CAS  Google Scholar 

  40. Qian CX, Rui YF, Wang CY, Wang XM, Xue B, Yi HH (2021) Bio-mineralization induced by Bacillus mucilaginosus in crack mouth and pore solution of cement-based materials. Mat Sci Eng C 126:112120. https://doi.org/10.1016/j.msec.2021.112120

    Article  CAS  Google Scholar 

  41. Xiao LL, Lian B (2016) Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2. Carbonate Evaporite 31(1):39–45. https://doi.org/10.1007/s13146-015-0239-4

    Article  CAS  Google Scholar 

  42. Konwarh R, Palanisamy SB, Jogi PK (2020) A mini review on prospects and challenges of harnessing fungi for concrete-crack healing. Mater Sci Res India 17(2):117–128. https://doi.org/10.13005/msri/170204

    Article  CAS  Google Scholar 

  43. Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biot 100(6):2591–2602. https://doi.org/10.1007/s00253-016-7316-z

    Article  CAS  Google Scholar 

  44. Jiang L, Jia GH, Wang YZ, Li Z (2020) Optimization of sporulation and germination conditions of functional bacteria for concrete crack-healing and evaluation of their repair capacity. ACS Appl Mater Interfaces 12:10938–10948. https://doi.org/10.1021/acsami.9b21465

    Article  CAS  Google Scholar 

  45. Qian CX, Ren XW, Rui YF, Wang K (2021) Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species. Biochem Eng J 176:108180. https://doi.org/10.1016/j.bej.2021.108180

    Article  CAS  Google Scholar 

  46. Wang ZY, Fu WQ, Hu LY, Zhao M, Guo TJ, Hrynsphan D, Tatsiana S, Chen J (2021) Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: possessed redox characteristics and secreted endogenous electron mediator. Sci Total Environ 781(10):146686. https://doi.org/10.1016/j.scitotenv.2021.146686

    Article  CAS  Google Scholar 

  47. Wang ZY, Dai LY, Yao JC, Guo TJ, Hrynsphan D, Tatsiana S, Chen J (2021) Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 281:130718. https://doi.org/10.1016/j.chemosphere.2021.130718

    Article  CAS  Google Scholar 

  48. El-Sherbiny S, El-Sheikh SM, Barhoum A (2015) Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol 279:290–300. https://doi.org/10.1016/j.powtec.2015.04.006

    Article  CAS  Google Scholar 

  49. Li CQ, Liang C, Chen ZM, Di YH, Zheng SL, Wei S, Sun ZM (2021) Surface modification of calcium carbonate: a review of theories, methods and applications. J Cent South Univ 28(9):2589–2611. https://doi.org/10.1007/s11771-021-4795-6

    Article  CAS  Google Scholar 

  50. Yazdian-Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS, Abnous K, Taghdisi SM (2019) Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm 45:603–610. https://doi.org/10.1080/03639045.2019.1569029

    Article  CAS  Google Scholar 

  51. Wang JL, Fan ZY, Li SM, Liu X, Shen X, Su F (2017) Fabrication and characterization of composites composed of a bioresorbable polyester matrix and surface modified calcium carbonate whisker for bone regeneration. Polym Advan Technol 28:1892–1901. https://doi.org/10.1002/pat.4078

    Article  CAS  Google Scholar 

  52. Lu JS, Cong XQ, Li YD, Hao Y, Wang CL (2018) High strength artificial stoneware from marble waste via surface modification and low temperature sintering. J Clean Prod 180:728–734. https://doi.org/10.1016/j.jclepro.2018.01.181

    Article  CAS  Google Scholar 

  53. Mallakpour S, Khadem E (2017) Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: application in adsorption of heavy metal and oxygen permeation property. Ultrason Sonochem 39(6):430–438. https://doi.org/10.1016/j.ultsonch.2017.05.008

    Article  CAS  Google Scholar 

  54. Islam MS, Choi WS, Nam B, Yoon C, Lee HJ (2017) Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem Eng J 307:208–219. https://doi.org/10.1016/j.cej.2016.08.079

    Article  CAS  Google Scholar 

  55. Antony J, Meera V, Raphael VP, Vinod P (2022) Facile encapsulation of nano zero-valent iron with calcium carbonate: synthesis, characterization and application for iron remediation[J]. J Environ Health Sci 20(2):915–930. https://doi.org/10.1007/s40201-022-00831-0

    Article  CAS  Google Scholar 

  56. Zheng TW, Su YL, Zhang X, Zhou HY, Qian CX (2020) Effect and mechanism of encapsulation-based spores on self-healing concrete at different curing ages. ACS Appl Mater Interfaces 12(47):52415–52432. https://doi.org/10.1021/acsami.0c16343

    Article  CAS  Google Scholar 

  57. Son HM, Kim HY, Park SM, Lee HK (2018) Ureolytic/non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair. Materials 11(5):782. https://doi.org/10.3390/ma11050782

    Article  CAS  Google Scholar 

  58. Zhuang DX, Yan HX, Tucker ME, Zhao H, Han ZZ, Zhao YD, Sun B, Li D, Pan JT, Zhao YY, Meng RR, Shan GH, Zhang XK, Tang RZ (2018) Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: further insights into biotic and abiotic calcite. Chem Geol 500:64–87. https://doi.org/10.1016/j.chemgeo.2018.09.018

    Article  CAS  Google Scholar 

  59. Amgoth C, Chen S, Malavath T, Tang GP (2020) Block copolymer [(L-GluA-5-BE)-b-(L-AspA-4-BE)]-based nanoflower capsules with thermosensitive morphology and pH-responsive drug release for cancer therapy. J Mater Chem B 8:9258–9268. https://doi.org/10.1039/d0tb01647k

    Article  CAS  Google Scholar 

  60. Amgoth C, Avinash S, Rompivalasa S, Yumnam S, Mangla P, Karthik R, Tang GP, Banavoth M (2019) Solvent assisted size effect on AuNPs and significant inhibition on K562 cells. RSC Adv 9(58):33931–33940. https://doi.org/10.1039/C9RA05484G

    Article  CAS  Google Scholar 

  61. Amgoth C, He YH, Wang SP, Yu KX, Wang JW, Hu XR, Zhou J, Tang GP, Bai HZ (2022) Metal (Au)-decorated chitosan-L-arginine polymeric vector for codelivery of gefitinib and miR125b for lung cancer therapy. ACS Appl Polym Mater 4(3):1675–1687. https://doi.org/10.1021/acsapm.1c01515

    Article  CAS  Google Scholar 

  62. Lin PY, Wu HM, Hsieh SL, Li JS, Dong CD, Chen CW, Hsieh SC (2020) Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 254:126903. https://doi.org/10.1016/j.chemosphere.2020.126903

    Article  CAS  Google Scholar 

  63. Sun MM, Jin H, Guo XF, Wang SZ, Bi JT, Ji ZY, Zhao YM (2023) Precipitation and in-situ surface modification of calcium carbonate in synthetic seawater: polymorph control, crystallization kinetics, and hydrophobic vaterite preparation. J Environ Chem Eng 11(3):110019. https://doi.org/10.1016/j.jece.2023.110019

    Article  CAS  Google Scholar 

  64. Souza EF, Jéssica AR, Ambrósio Pinto BCS, Beltrame M, Sakane KK, Pinto JG, Ferreira-Strixino J, Gonçalves EP, Simioni AR (2020) Vaterite submicron particles design for photodynamic therapy in cells. Photodiagn Photodyn 31:101913. https://doi.org/10.1016/j.pdpdt.2020.101913

    Article  CAS  Google Scholar 

  65. Luo M, Qian CX (2016) Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr Build Mater 121:659–663. https://doi.org/10.1016/j.conbuildmat.2016.06.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are much appreciated the financial support from the Innovation Cultivation Project of Beijing Academy of Science and Technology (2023G-0009), Beike Scholars Program of Beijing Academy of Science and Technology (2022A-0007) and National Natural Science Foundation of China (42077146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxia Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Hou, D., Leng, W. et al. Preparation, characterization, and formation mechanism of different biological calcium carbonate (CaCO3) induced by Bacillus mucilaginosus and Bacillus alcalophilus. J Nanopart Res 25, 189 (2023). https://doi.org/10.1007/s11051-023-05833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05833-z

Keywords

Navigation