Skip to main content

Advertisement

Log in

General justification in terms of effectiveness and toxicities for the use of nanocarriers

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This review highlights the potential benefits and drawbacks of using nanocarriers as drug delivery systems. Nanocarriers have been widely utilized to enhance drug efficiency, overcome drug resistance, and reduce adverse effects. However, the interaction between nanocarriers and biological systems can lead to toxic responses. Therefore, it is crucial to carefully select optimized nanocarriers to minimize toxicity and maximize efficiency. Every type of nanocarrier has its own advantages and disadvantages. Hybrid nanocarriers have been engineered to address the limitations of existing nanocarriers and are considered more suitable for developing new formulations. The article discusses various aspects of nanocarriers, including their applicability, potential toxicity, and strategies for utilizing appropriate nanocarriers in nanoformulations. To mitigate the toxicity of nanocarriers, several approaches can be employed, such as PEGylation, coating, charge coating, and injections of free PEG; moreover, by modifying the preparation method or utilizing hybrid nanocarriers, the efficiency of drug delivery systems can be improved. Overall, the article emphasizes the importance of selecting appropriate nanocarriers and employing strategies to reduce toxicity while enhancing drug delivery efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PLA:

Poly-(lactic acid)

PLGA:

Poly-(lactic-co-glycolic acid)

PEG:

Polyethylene glycol

NP:

Nanoparticle

SLNs:

Solid lipid nanoparticle

NLCs:

Nanostructured lipid carriers

FDA:

Food and drug administration

APCs:

Antigen-presenting cells

EPR:

Enhanced permeability and retention

RBC:

Red blood cells

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

SM:

Sphingomyelin

DOPS:

1,2-Dioleoyl-snglycero-3-phospho-L-serine (DOPS)

DOPE:

1,2-Dioleoyl-snglycero-3-phosphoethanolamin

TPGS:

D-α-Tocopheryl polyethylene glycol 1000 succinate

DLPC:

1,2-Dilauroylphosphatidylcholine

EE%:

Encapsulation efficiency

HPMC:

Hydroxypropyl methylcellulose

CF:

Carboxyfluorescein

PC:

Soya phosphatidylcholine

DPPC:

Dipalmitoylphosphatidylcholine

5FU:

5-Fluorouracil

DOPG:

Dioleoylphosphatidylglycerol

ABC:

Accelerated blood clearance

PEI:

Polyethylene imines

ROS:

Reactive oxygen species

TEMPO:

,2,6,6-Tetramethylpiperidine-1-oxyl

ACE2:

Angiotensin-converting enzyme 2

CMC:

Carboxymethyl cellulose

References

  1. Dunne S et al (2013) A review of the differences and similarities between generic drugs and their originator counterparts, including economic benefits associated with usage of generic medicines, using Ireland as a case study. BMC Pharmacol Toxicol 14(1):1

    Article  Google Scholar 

  2. Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Article  Google Scholar 

  3. Oroojalian F et al (2020) Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 321:442–462

    Article  CAS  Google Scholar 

  4. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  Google Scholar 

  5. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  Google Scholar 

  6. Hines DJ, Kaplan DL (2013) Poly (lactic-co-glycolic) acid− controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 30(3):257–76

    Article  CAS  Google Scholar 

  7. Kesharwani P et al (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    Article  CAS  Google Scholar 

  8. Dang Y, Guan J (2020) Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine 1:10–19

  9. Klibanov AL et al (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  CAS  Google Scholar 

  10. Bulbake U et al (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):12

    Article  Google Scholar 

  11. Li Z et al (2017) Cancer drug delivery in the nano era: An overview and perspectives. Oncol Rep 38(2):611–624

    Article  CAS  Google Scholar 

  12. Prasad M et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    Article  CAS  Google Scholar 

  13. Bhardwaj V et al (2019) Recalcitrant Issues and New Frontiers in Nano-Pharmacology. Front Pharmacol 10:1369

    Article  Google Scholar 

  14. Farjadian F et al (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14(1):93–126

    Article  CAS  Google Scholar 

  15. Badea N et al (2020) Systems based on carbon nanotubes with potential in cancer therapy. Mater Chem Phys 241:122435

    Article  CAS  Google Scholar 

  16. Vakhshiteh F et al (2020) Peptide-conjugated liposomes for targeted miR-34a delivery to suppress breast cancer and cancer stem-like population. J Drug Delivery Sci Technol 57

  17. Keshtiara P et al (2020) New dendrimers containing ruthenium nanoparticles as catalysts for hydrogenation of citral to 3, 7-dimethyloctanol. Mater Chem Phys 249

  18. Moghimipour E et al (2013) Solid lipid nanoparticles as a delivery system for Zataria multiflora essential oil: formulation and characterization. Curr Drug Deliv 10(2):151–157

    Article  CAS  Google Scholar 

  19. Kaur G et al (2016) Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv 23(7):2497–2512

    Article  CAS  Google Scholar 

  20. Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23(9):3319–3329

    Article  CAS  Google Scholar 

  21. Handali S et al (2019) Co-delivery of 5-fluorouracil and oxaliplatin in novel poly (3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly (lactic-co-glycolic acid) nanoparticles for colon cancer therapy. Int J Biol Macromol 124:1299–1311

    Article  CAS  Google Scholar 

  22. Jiang T et al (2020) Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res Int 132

  23. Sett R et al (2020) Effect of temperature and salts on niosome-bound anti-cancer drug along with disruptive influence of cyclodextrins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 234

  24. Shah S et al (2020) Nanogels as drug Carriers-Introduction, chemical Aspects, release mechanisms and potential Applications. Int J Pharm 15. https://doi.org/10.1016/j.ijpharm.2020.119268

  25. Peng Y et al (2020) Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 15(2):220–236. https://doi.org/10.1016/j.ajps.2020.02.004

    Article  Google Scholar 

  26. Silva AH et al (2014) Solid lipid nanoparticles induced hematological changes and inflammatory response in mice. Nanotoxicology 8(2):212–219

    Article  CAS  Google Scholar 

  27. Lee JS et al (2010) Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J Control Release 146(3):400–408

    Article  CAS  Google Scholar 

  28. Aibani N et al (2020) Liposome mimicking polymersomes; A comparative study of the merits of polymersomes in terms of formulation and stability. Int J Pharm : X 2:100040

    CAS  Google Scholar 

  29. Toh M-R, Chiu GN (2013) Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci 8(2):88–95

    Article  CAS  Google Scholar 

  30. Zavec AB et al (2014) Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. J Biotechnol 192:130–135

    Article  CAS  Google Scholar 

  31. Atallah C et al (2020) Development of cysteamine loaded liposomes in liquid and dried forms for improvement of cysteamine stability. Int J Pharm 15(589). https://doi.org/10.1016/j.ijpharm.2020.119721

  32. Salvi VR, Pawar P (2019) Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol 7(1):41–55

    Google Scholar 

  33. Karmakar G et al (2018) Role of PEG 2000 in the surface modification and physicochemical characteristics of pyrazinamide loaded nanostructured lipid carriers. J Chem Sci 130(4):42

    Article  Google Scholar 

  34. Müller RH (2007) Lipid nanoparticles: recent advances. Adv Drug Deliv Rev 59(6):522–30. https://doi.org/10.1016/j.addr.2007.04.012

    Article  CAS  Google Scholar 

  35. Zhou X et al (2018) Nano-formulations for transdermal drug delivery: a review. Chin Chem Lett 29(12):1713–1724

    Article  CAS  Google Scholar 

  36. Shah SM et al (2015) LeciPlex, invasomes, and liposomes: A skin penetration study. Int J Pharm 490(1-2):391–403

    Article  CAS  Google Scholar 

  37. Amnuaikit T et al (2018) Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J Pharm Sci 13(5):472–484

    Article  Google Scholar 

  38. Zheng C, Lü FL (2013) The Virosome as a Novel Concept for High Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV) Vaccines. J Integr Agric 12(7):1215–1224

    Article  Google Scholar 

  39. Pöltl-Frank F et al (1999) Use of reconstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide-based vaccine. Clin Exp Immunol 117(3):496

    Article  Google Scholar 

  40. Moussaoui N et al (2002) Marinosomes®, marine lipid-based liposomes: physical characterization and potential application in cosmetics. Int J Pharm 242(1-2):361–365

    Article  CAS  Google Scholar 

  41. Cansell MS et al (2007) Prostaglandin E2 and interleukin-8 production in human epidermal keratinocytes exposed to marine lipid-based liposomes. Int J Pharm 343(1-2):277–280

    Article  CAS  Google Scholar 

  42. Paleos CM et al (2013) Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release 170(1):141–152

    Article  CAS  Google Scholar 

  43. Mishra DK et al (2018) Lipid based nanocarriers: a translational perspective. Nanomedicine 14(7):2023–2050

    Article  CAS  Google Scholar 

  44. Lu M et al (2018) Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm 550(1-2):100–113

    Article  CAS  Google Scholar 

  45. Stremersch S et al (2016) Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J Control Release 232:51–61

    Article  CAS  Google Scholar 

  46. Donoso-Quezada J et al (2019) Exosomes as nanocarriers for the delivery of bioactive compounds from black bean extract with antiproliferative activity in cancer cell lines. Mater Today: Proc 13:362–369

    Article  CAS  Google Scholar 

  47. Niu X et al (2019) Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 14(5):480–496

    Article  Google Scholar 

  48. Shi H et al (2020) Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int J Pharm 30(582)

  49. Sorasitthiyanukarn FN et al (2018) Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 93:178–190

    Article  CAS  Google Scholar 

  50. Saralkar P, Dash AK (2017) Alginate nanoparticles containing curcumin and resveratrol: preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech 18(7):2814–2823

    Article  CAS  Google Scholar 

  51. Sosnik A (2014) Alginate particles as platform for drug delivery by the oral route: state-of-the-art. Int Scholarly Res Notices 20142014(2014)

  52. Moghimipour E et al (2014) Archaeosomes as means of nano-drug delivery. Rev Med Microbiol 25(2):40–45

    Article  Google Scholar 

  53. Li Z et al (2010) Investigation of archaeosomes as carriers for oral delivery of peptides. Biochem Biophys Res Commun 394(2):412–417

    Article  CAS  Google Scholar 

  54. Agbayani G et al (2020) Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Hum Vaccin Immunother 16(9):2183–2195. https://doi.org/10.1080/21645515.2020.1788300

    Article  CAS  Google Scholar 

  55. Le Meins J-F et al (2011) Recent trends in the tuning of polymersomes’ membrane properties. Euro Phys J E 34(2):1–17

    Article  Google Scholar 

  56. Poma A et al (2018) Polymersomes: Synthesis and Applications. In: Encyclopedia of Polymer Science and Technology, pp 1–43

    Google Scholar 

  57. Pan XQ et al (2019) Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int J Biol Macromol 139:377–386

    Article  CAS  Google Scholar 

  58. Pink DL et al (2019) On the structure of solid lipid nanoparticles. Small 15(45):1903156

    Article  CAS  Google Scholar 

  59. Johnsen KB et al (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1846(1):75–87

    Article  CAS  Google Scholar 

  60. Kisak E et al (2004) The vesosome-A multicompartment drug delivery vehicle. Curr Med Chem 11(2):199–219

    Article  CAS  Google Scholar 

  61. Ibrahim S et al (2018) Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int J Pharm 540(1-2):40–49

    Article  CAS  Google Scholar 

  62. Dey M et al (2019) Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. Int J Biol Macromol 1(130):34–49. https://doi.org/10.1016/j.ijbiomac.2019.02.094

    Article  CAS  Google Scholar 

  63. McCluskie MJ et al (2017) Sulfated archaeal glycolipid archaeosomes as a safe and effective vaccine adjuvant for induction of cell-mediated immunity. Hum Vaccin Immunother 13(12):2772–2779

    Article  Google Scholar 

  64. Moghimipour E et al (2013) The potent in vitro skin permeation of archaeosome made from lipids extracted of Sulfolobus acidocaldarius. Archaea 2013

  65. Muñoz-Juan A et al (2019) Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems. Pharmaceutics 11(7):300

    Article  Google Scholar 

  66. Yang J et al (2013) Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake. Integr Biol 5(1):151–158

    Article  CAS  Google Scholar 

  67. Casañas A et al (2012) Vault particles: a new generation of delivery nanodevices. Curr Opin Biotechnol 23(6):972–977

    Article  Google Scholar 

  68. Romana B et al (2020) A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. Eur J Pharm Biopharm 154:338–347

    Article  CAS  Google Scholar 

  69. Hadinoto K et al (2013) Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443

    Article  CAS  Google Scholar 

  70. Emami F et al (2019) Poly (lactic acid)/poly (lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Investig 1–1630(3):257–76

    Google Scholar 

  71. Sur S et al (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures Nano-Objects 20:100397

    Article  CAS  Google Scholar 

  72. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B: Biointerfaces 85(2):214–220

    Article  CAS  Google Scholar 

  73. Ghitman J et al (2020) Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater Des 193(1)

  74. Macedo AS et al (2020) Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 10(320):125–141. https://doi.org/10.1016/j.jconrel.2020.01.006

    Article  CAS  Google Scholar 

  75. ud Din, F. et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291

    Article  Google Scholar 

  76. Behzadi S et al (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244

    Article  CAS  Google Scholar 

  77. Wang H et al (2018) The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(4):e1500

    Article  Google Scholar 

  78. Blanco E et al (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    Article  CAS  Google Scholar 

  79. Qie Y et al (2016) Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6(1):1–11

    Google Scholar 

  80. Li H et al (2019) Size Dependency of Circulation and Biodistribution of Biomimetic Nanoparticles: Red Blood Cell Membrane-Coated Nanoparticles. Cells 8(8):881

    Article  CAS  Google Scholar 

  81. Rayamajhi S et al (2020) pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids Surf B: Biointerfaces 188:110804

    Article  CAS  Google Scholar 

  82. Nogueira E et al (2015) Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 136:514–526

    Article  CAS  Google Scholar 

  83. Nair KL et al (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine 6:1685–1697

    CAS  Google Scholar 

  84. Yang W et al (2018) Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater Sci Eng C 89:328–335

    Article  CAS  Google Scholar 

  85. Handali S et al (2019) New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: Strong implication for enhanced potency and safety. Life Sci 227:39–50

    Article  CAS  Google Scholar 

  86. Chen J et al (2016) Nanostructured glycopolymer augmented liposomes to elucidate carbohydrate-mediated targeting. Nanomedicine 12(7):2031–2041

    Article  CAS  Google Scholar 

  87. Moghimipour E et al (2018) A mechanistic study of the effect of transferrin conjugation on cytotoxicity of targeted liposomes. J Microencapsul 35(6):548–558

    Article  CAS  Google Scholar 

  88. Calori IR et al (2020) Determination of critical micelle temperature of Pluronics® in Pluronic/gel phase liposome mixtures using steady-state anisotropy. J Mol Liq 304

  89. Ge P et al (2020) Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem Eng J 383:123228

    Article  CAS  Google Scholar 

  90. Mirakabad FST et al (2019) Peptide dendrimers as valuable biomaterials in medical sciences. Life Sci 15(233)

  91. Sreelekshmi, P. et al. (2020) Peptide dendrimer stabilized gold nanoparticles as sensors. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.12.060

  92. Forier K et al (2014) Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 190:607–623

    Article  CAS  Google Scholar 

  93. Watkins R et al (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055

    CAS  Google Scholar 

  94. Wang Y et al (2020) Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. J Control Release 10(328):970–984. https://doi.org/10.1016/j.jconrel.2020.09.013

    Article  CAS  Google Scholar 

  95. Tao J et al (2020) Toward understanding the prolonged circulation and elimination mechanism of crosslinked polymeric micelles in zebrafish model. Biomaterials 256:120180

    Article  CAS  Google Scholar 

  96. Peres LB et al (2016) Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B: Biointerfaces 140:317–323

    Article  Google Scholar 

  97. Surapaneni SG, Ambade AV (2022) Poly (N-vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride. RSC Adv 12(27):17621–17628

    Article  CAS  Google Scholar 

  98. Gallez A et al (2020) Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17beta-estradiol: An innovative drug delivery system that prevents the activation of the membrane-initiated steroid signaling (MISS) of estrogen receptor alpha. Int J Pharm 573:118861

    Article  CAS  Google Scholar 

  99. Godara S et al (2020) Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater Sci Eng C 109:110576

    Article  CAS  Google Scholar 

  100. Trucillo P et al (2020) Production of liposomes loaded alginate aerogels using two supercritical CO2 assisted techniques. Journal of CO2 Utilization 39:101161

    Article  CAS  Google Scholar 

  101. Hu Y et al (2014) In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters. Nanoscale Res Lett 9(1):434

    Article  Google Scholar 

  102. Fathi M, Barar J (2017) Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Bioimpacts 7(1):49

    Article  CAS  Google Scholar 

  103. Shende P, Gupta H (2020) Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing. Life Sci 15(253)

  104. Dave V et al (2019) Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 160:130–142. https://doi.org/10.1016/j.mimet.2019.03.017

    Article  CAS  Google Scholar 

  105. Liu Y et al (2010) Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 395(1-2):243–250

    Article  CAS  Google Scholar 

  106. Khan MM et al (2019) Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv 26(1):765–772

    Article  CAS  Google Scholar 

  107. Yousaf R et al (2023) Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon 9(3)

  108. Arruda DC et al (2022) Spheroplexes: Hybrid PLGA-cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J Control Release 350:228–243

    Article  CAS  Google Scholar 

  109. Ramazani F et al Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microparticles: state-of-the-art and challenges. Polym Particles Sustained Local Drug Delivery 499(1-2):358–367. https://doi.org/10.1016/j.ijpharm.2016.01.020

  110. Vrignaud S et al (2011) Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32(33):8593–8604

    Article  CAS  Google Scholar 

  111. Ding N et al (2020) Improving plasma stability and antitumor effect of gemcitabine via PEGylated liposome prepared by active drug loading. J Drug Deliv Sci Technol57(2):101538. https://doi.org/10.1016/j.jddst.2020.101538

  112. Yin L et al (2020) Comparative pharmacokinetic study of PEGylated gemcitabine and gemcitabine in rats by LC-MS/MS coupled with pre-column derivatization and MSALL technique. Talanta 206:120184

    Article  CAS  Google Scholar 

  113. Yalcin TE et al (2018) Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol 23(1):76–86

    Article  CAS  Google Scholar 

  114. Refai H et al (2017) Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate. Drug Deliv 24(1):278–288

    Article  CAS  Google Scholar 

  115. Huang X et al (2017) The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 524(1-2):279–289

    Article  CAS  Google Scholar 

  116. Handali S et al (2018) A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother 108:1259–1273

    Article  CAS  Google Scholar 

  117. Jacquot A et al (2014) Morphological and physical analysis of natural phospholipids-based biomembranes. PLoS One 9(9)

  118. Monteiro N et al (2014) Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 11(101):20140459

    Article  Google Scholar 

  119. Jin Z et al (2019) Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 15(572)

  120. Ohno S et al (2009) Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A* 0201 transgenic mice. Vaccine 27(29):3912–3920

    Article  CAS  Google Scholar 

  121. Sacha M et al (2019) Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomed Pharmacother 111:785–790

    Article  CAS  Google Scholar 

  122. Sadekar S et al (2013) Poly (amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin. Int J Pharm 456(1):175–185

    Article  CAS  Google Scholar 

  123. Igartúa DE et al (2023) PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation. OpenNano 11:100140

    Article  Google Scholar 

  124. Jangid AK et al (2023) Phenylboronic acid conjugated PAMAM G4 dendrimers augmented usnic acid delivery to gastric cancer cells. Eur Polym J 192:112073

    Article  Google Scholar 

  125. Shrivastava P et al (2020) 20 - Nanotechnology for oral drug delivery and targeting. In: Mozafari M (ed) Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier, pp 473–498

    Chapter  Google Scholar 

  126. Godugu C et al (2016) Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur J Pharm Biopharm 108:168–179

    Article  CAS  Google Scholar 

  127. Harisa GI et al (2023) TPGS decorated NLC shift gefitinib from portal absorption into lymphatic delivery: Intracellular trafficking, biodistribution and bioavailability studies. Colloids Surf B: Biointerfaces 223:113148

    Article  CAS  Google Scholar 

  128. Liu N et al (2019) The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere 245

  129. Balazs DA (2011) Godbey W (2011) Liposomes for use in gene delivery. J Drug Delivery 2011

  130. Knudsen KB et al (2015) In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11(2):467–477

    Article  CAS  Google Scholar 

  131. Dokka S et al (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17(5):521–525

    Article  CAS  Google Scholar 

  132. Perche F (2013) Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013

  133. Cheng W, Allen T (2010) The use of single chain Fv as targeting agents for immunoliposomes: an update on immunoliposomal drugs for cancer treatment. Expert Opin Drug Deliv 7(4):461–478

    Article  CAS  Google Scholar 

  134. Knudsen KB et al (2014) Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8(7):764–774

    CAS  Google Scholar 

  135. Moghimi SM, Hamad I (2008) Liposome-mediated triggering of complement cascade. J Liposome Res 18(3):195–209

    Article  CAS  Google Scholar 

  136. Hayat SMG et al (2019) (2019) Stealth functionalization of biomaterials and nanoparticles by cd47 mimicry. Int J Pharm 569

  137. Mohamed M et al (2019) PEGylated liposomes: immunological responses. Sci Technol Adv Mater 20(1):710–724

    Article  CAS  Google Scholar 

  138. Inglut CT et al (2020) Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials 10(2):190

    Article  CAS  Google Scholar 

  139. McSweeney MD et al (2019) Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG. J Control Release 311:138–146

    Article  Google Scholar 

  140. Ajdary M et al (2018) Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 8(9):634

    Article  Google Scholar 

  141. Wei X et al (2015) Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res 25(2):237–253

    Article  CAS  Google Scholar 

  142. Mukherjee SP et al (2010) Mechanistic studies of in vitro cytotoxicity of poly (amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol 248(3):259–268

    Article  CAS  Google Scholar 

  143. Ali BM et al (2020) Radical dendrimers: Synthesis, anti-tumor activity and enhanced cytoprotective performance of TEMPO free radical functionalized polyurethane dendrimers. Eur Polym J 122:109354

    Article  Google Scholar 

  144. Jevprasesphant R et al (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20(10):1543–1550

    Article  CAS  Google Scholar 

  145. Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64(6):571–588

    Article  CAS  Google Scholar 

  146. Saovapakhiran A et al (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20(4):693–701

    Article  CAS  Google Scholar 

  147. Sun Y et al (2015) Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol 12(1):4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Rezaei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handali, S., Rezaei, M. General justification in terms of effectiveness and toxicities for the use of nanocarriers. J Nanopart Res 25, 181 (2023). https://doi.org/10.1007/s11051-023-05826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05826-y

Keywords

Navigation