Skip to main content
Log in

Effect of large ammonium cations on the aggregation kinetics of citrate capped gold nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

It is known that citrate capped gold nanoparticles (Ct-AuNP) aggregate when an electrolyte is added to the medium due to the electrostatic screening produced by the cations on the nanoparticle surface. Small cations are mostly employed when studying this effect. Instead, here we use the large monovalent cations coming from tetrabutylammonium chloride (Bu4N+Cl-), tetrapropylammonium chloride (Pr4N+Cl-) and tetraethylammonium chloride (Et4N+Cl-) in order to induce the aggregation of Ct-AuNP of 20 nm of hydrodynamic diameter. Then, we have followed the aggregation kinetics by means of dynamic light scattering and ultraviolet-visible spectroscopy. Also, we have measured the zeta potential and taken transmission electron microscopy images. We show that these large cations produce a quick aggregation which is stronger as larger is the cation. Thus, the results indicate that larger cations screen more efficiently the Ct-AuNP surface which can be ascribed to the weaker hydration of larger cations. On the other hand, the greater destabilising effect produced by larger cations is in agreement with the direct Hofmeister series.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Kohout C, Santi C, Polito L (2018) Anisotropic gold nanoparticles in biomedical applications. Int J Mol Sci 19:3385. https://doi.org/10.3390/ijms19113385

    Article  CAS  Google Scholar 

  2. Siddiq AM, Thangam R, Madhan B, Sayem Alam M (2019) Counterion coupled (COCO) gemini surfactant capped Ag/Au alloy and Ag@Aun core-shell nanoparticles for cancer therapy. RSC Adv 9:37830–37845. https://doi.org/10.1039/c9ra06494j

    Article  CAS  Google Scholar 

  3. Siddiq AM, Thangam R, Madhan B, Sayem Alam M (2019) Green (gemini) surfactant mediated gold nanoparticles green synthesis: effect on triple negative breast cancer cells. Nano Struct Nano-Objects 19:100373. https://doi.org/10.1016/j.nanoso.2019.100373

    Article  CAS  Google Scholar 

  4. Mbambo AT, Kruger HG, Mdluli PS, Madikizela LM (2019) Fabrication and application of a gold nanoparticle based colorimetric device for the determination of NaCl in seawater and estuarine water. J Nanopart Res 21:135. https://doi.org/10.1007/s11051-019-4579-1

    Article  CAS  Google Scholar 

  5. Grueso, E.; Giráldez-Pérez, R.M.; Prado-Gotor, R. Recent advances in the design of colorimetric sensors based on gold nanoparticles. In Advanced Nanomaterials; Ikhmayies, S.J., Ed.; Springer: Cham, Swiss, 2022, pp 445-495. https://doi.org/10.1007/978-3-031-11996-5_16

  6. Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, Feng L (2020) The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci 21:2480. https://doi.org/10.3390/ijms21072480

    Article  CAS  Google Scholar 

  7. Thakuria A, Kataria B, Gupta D (2021) Nanoparticle-based methodologies for targeted drug delivery – an insight. J Nanopart Res 23:87. https://doi.org/10.1007/s11051-021-05190-9

    Article  CAS  Google Scholar 

  8. Grys D-B, de Nijs B, Salmon AR, Huang J, Wang W, Chen W-H, Scherman OA, Baumberg JJ (2020) Citrate coordination and bridging of gold nanoparticles: The role of gold adatoms in AuNP aging. ACS Nano 14:8689–8696. https://doi.org/10.1021/acsnano.0c03050

    Article  CAS  Google Scholar 

  9. Collado-González M, Fernández Espín V, Montalbán MG, Pamies R, Hernández Cifre JG, Díaz Baños FG, Víllora G, García de la Torre J (2015) Aggregation behaviour of gold nanoparticles in presence of chitosan. J Nanopart Res 17:268. https://doi.org/10.1007/s11051-015-3069-3

    Article  CAS  Google Scholar 

  10. Herrera Robalino D, Durán del Amor MM, Almagro Gómez CM, Hernández Cifre JG (2021) Aggregation of gold nanoparticles in presence of the thermoresponsive cationic diblock copolymer PNIPAAM48-b-PAMPTMA6. Polymers 13:4066. https://doi.org/10.3390/polym13234066

    Article  CAS  Google Scholar 

  11. Pamies R, Hernández Cifre JG, Fernández Espín V, Collado-González MM, Díaz Baños FG, García de la Torre J (2014) Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res 16:2376. https://doi.org/10.1007/s11051-014-2376-4

    Article  CAS  Google Scholar 

  12. Christau S, Moeller T, Koehler R, von Klitzing R (2017) Salt-induced aggregation of negatively charged gold nanoparticles confined in a polymer brush matrix. Macromolecules 50:7333–7343. https://doi.org/10.1021/acs.macromo.7b00866

    Article  CAS  Google Scholar 

  13. Barreto A, Luis LG, Girão AV, Trindade T, Soares AMVM, Oliveira M (2015) Behavior of colloidal gold nanoparticles in different ionic strength media. J Nanopart Res 17:493. https://doi.org/10.1007/s11051-015-3302-0

    Article  CAS  Google Scholar 

  14. Alba-Molina D, Martín-Romero MT, Camacho L, Giner-Casares JJ (2017) Ion-mediated aggregation of gold nanoparticles for light-induced heating. Appl Sci 7:916. https://doi.org/10.3390/app7090916

    Article  CAS  Google Scholar 

  15. Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrión C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 11:20130931. https://doi.org/10.1098/rsif.2013.0931

    Article  CAS  Google Scholar 

  16. Liu B, Kelly EY, Liu J (2014) Cation-size-dependent DNA adsorption kinetics and packing density on gold nanoparticles: an opposite trend. Langmuir 30:13228–13234. https://doi.org/10.1021/la503188h

    Article  CAS  Google Scholar 

  17. Oncsik T, Trefalt G, Borkovec M, Szilagyi I (2015) Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir 31:3799–3807. https://doi.org/10.1021/acs.langmuir.5b00225

    Article  CAS  Google Scholar 

  18. Perera GS, Yang G, Nettles CB II, Pérez F, Hollis TK, Zhang D (2016) Counterion effects on electrolyte interactions with gold nanoparticles. J Phys Chem C 120:23604–23612. https://doi.org/10.1021/acs.jpcc.6b07885

    Article  CAS  Google Scholar 

  19. Hu S, Huang P-JJ, Wang J, Liu J (2020) Dissecting the effect of salt for more sensitive label-free colorimetric detection of DNA using gold nanoparticles. Anal Chem 92:13354–13360. https://doi.org/10.1021/acs.analchem.0c02688

    Article  CAS  Google Scholar 

  20. Jagtap NR, Shelke VA, Nimase MS, Jadhav SM, Shankarwar SG, Chondhekar TK (2012) Electrochemical synthesis of tetra alkyl ammonium salt stabilized gold nanoparticles. Synthesis and reactivity in inorganic, metal-organic and nano-metal chemistry 42:1369–1374. https://doi.org/10.1080/15533174.2012.680124

    Article  CAS  Google Scholar 

  21. Morita T, Yada S, Yoshimura T (2023) Catalytic activity of gold nanoparticles protected by quaternary ammonium salt-based gemini surfactants with different spacer structures. Phys Chem Chem Phys 25:16288–16293. https://doi.org/10.1039/d3cp01116j

    Article  CAS  Google Scholar 

  22. Gregory KP, Elliot GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ (2022) Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 24:12682–12718. https://doi.org/10.1039/d2cp00847e

    Article  CAS  Google Scholar 

  23. Suarasan S, Focsan M, Maniu D, Astilean S (2013) Gelatin-nanogold bioconjugates as effective plasmonic platforms for SERS detection and tagging. Colloid Surf B-Biointerfaces 103:475–481. https://doi.org/10.1016/j.colsurfb.2012.10.046

    Article  CAS  Google Scholar 

  24. Zheng T, Bott S, Huo Q (2016) Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces 8:21585–21594. https://doi.org/10.1021/acsami.6b06903

    Article  CAS  Google Scholar 

  25. Marcus Y (2008) Tetraalkylammonium ions in aqueous and non-aqueous solutions. J Solut Chem 37:1071–1098. https://doi.org/10.1007/s10953-008-9291-1

    Article  CAS  Google Scholar 

  26. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  27. Olivier BJ, Sorensen CM (1990) Variable aggregation rates in colloidal gold: kernel homogeneity dependence on aggregant concentration. Phys Rev A 41:2093–2100 https://journals.aps.org/pra/pdf/10.1103/PhysRevA.41.2093

    Article  CAS  Google Scholar 

  28. Wilcoxon JP, Martin JE, Schaefer DW (1989) Aggregation in colloidal gold. Phys Rev A 39:2675–2688 https://journals.aps.org/pra/pdf/10.1103/PhysRevA.39.2675

    Article  CAS  Google Scholar 

  29. Liu X, Wazne M, Han Y, Christodoulatos C, Jasinkiewicz KL (2010) Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. J Colloid Interface Sci 348:101–107. https://doi.org/10.1016/j.jcis.2010.04.036

    Article  CAS  Google Scholar 

  30. Slusher JT, Cummings PT (1997) Molecular simulation study of tetraalkylammonium halides. 1. Solvation structure and hydrogen bonding in aqueous solutions. J Phys Chem B 101:3818–3826. https://doi.org/10.1021/jp963304+

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Fundación Séneca (Comunidad Autónoma de la Región de Murcia, Spain) with grant number 20933/PI/18 and European Union “NextGenerationEU”/PRTR" through the project TED2021-130334B-I00.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, J.A.O. and J.G.H.-C.; investigation, C.M.A.-G., J.A.O. and J.G.H.-C.; visualization, C.M.A.-G. and J.G.H.-C.; formal analysis, C.M.A.-G., J.A.O. and J.G.H.-C.; validation and supervision, J.A.O., J.G.T. and J.G.H.-C.; writing—original draft preparation, J.G.H.-C.; writing—review and editing J.G.T. and J.G.H.-C.; resources and project administration J.G.T. and J.G.H.-C.; funding acquisition, J.G.T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jose Gines Hernandez-Cifre.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 78 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almagro-Gómez, C.M., Ortuño, J.Á., de la Torre, J.G. et al. Effect of large ammonium cations on the aggregation kinetics of citrate capped gold nanoparticles. J Nanopart Res 25, 175 (2023). https://doi.org/10.1007/s11051-023-05825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05825-z

Keywords

Navigation