Skip to main content

Advertisement

Log in

Titanate nanotubes modified with gallium and cerium and their cytotoxic activity

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Sodium titanate nanotubes (NaTiNT) were synthesized using the hydrothermal method; subsequently, ion exchange reactions were carried out on the ions of Na+ present in the lamellar spaces of nanotubes by the intercalation of Ga3+ and/or Ce4+ and/or, revealing the presence of phases like: α-GaOOH and CeO2, probably decorating the surface of the nanotubes showing a complex heterostructure. As far as we know, these are the first titanate nanotubes intercalated with these two ions, gallium, and cerium, reported in the literature. Ion exchange processes preserved the original tubular structure of titanate nanotubes with relevant changes in their surface and interlamellar environment. It is known by the researchers that titanate nanotubes have low toxicity and acceptable biocompatibility. Here, we show that the insertion of Ce4+ and/or Ga3+ in titanate nanotubes increased its cytotoxic activity in melanoma cells, indicating that these hybrid nanomaterials are promising in future for health applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, BCV.

References

  1. Ou H, Lo S (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191. https://doi.org/10.1016/j.seppur.2007.07.017

    Article  CAS  Google Scholar 

  2. Li N, Zhang L, Chen Y, Fang M, Zhang J, Wang H (2012) Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv Funct Mater 22:835–841. https://doi.org/10.1002/adfm.201102272

    Article  CAS  Google Scholar 

  3. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  4. Sruthi S, Loiseau A, Boudon J, Sallem F, Maurizi L, Mohanan PV, Lizard G, Millot N (2018) In vitro interaction and biocompatibility of titanate nanotubes with microglial cells. Toxicol Appl Pharmacol 353:74–86. https://doi.org/10.1016/j.taap.2018.06.013

    Article  CAS  Google Scholar 

  5. Pereira A, Blouin M, Pillonnet A, Guay D (2014) Structure and valence properties of ceria films synthesized by laser ablation under reducing atmosphere. Mater Res Express 1(1):015704. https://doi.org/10.1088/2053-1591/1/1/015704

    Article  CAS  Google Scholar 

  6. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824. https://doi.org/10.1002/adma.200502696

    Article  CAS  Google Scholar 

  7. Sallem F, Boudon J, Heintz O, Séverin I, Megriche A, Millot N (2017) Synthesis and characterization of chitosan-coated titanate nanotubes: towards a new safe nanocarrier. Dalton Trans 46:15386–15398. https://doi.org/10.1039/C7DT03029K

    Article  CAS  Google Scholar 

  8. Sipos B, Pintye-Hódi K, Kónya Z, Kelemen A, Regdon G, Sovány T (2017) Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems. Int J Pharm 518:119–129. https://doi.org/10.1016/j.ijpharm.2016.12.053

    Article  CAS  Google Scholar 

  9. Mirjolet C, Boudon J, Loiseau A, Chevrier S, Gautier T, Boidot R, Paris J, Millot N, Crehange G (2014) 207 The enhancement of radiotherapy efficacy with docetaxel-titanate nanotubes as a new nanohybrid for localized high risk prostate cancer. Eur J Cancer 50:67. https://doi.org/10.1016/S0959-8049(14)70333-8

    Article  Google Scholar 

  10. SreeLatha T, Reddy MC, Muthukonda SV, Srikanth VVSS, Lomada D (2017) In vitro and in vivo evaluation of anti-cancer activity: shape-dependent properties of TiO 2 nanostructures. Mater Sci Eng: C. 78:969–977. https://doi.org/10.1016/j.msec.2017.04.011

    Article  CAS  Google Scholar 

  11. Mirjolet C, Boudon J, Loiseau A, Chevrier S, Boidot R, Oudot A, Collin B, Martin E, Joy P, Millot N, Créhange G (2017) Docetaxel-titanate nanotubes enhance radiosensitivity in an androgen-independent prostate cancer model. IJN 12:6357–6364. https://doi.org/10.2147/IJN.S139167

    Article  CAS  Google Scholar 

  12. Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8:449–456. https://doi.org/10.1016/j.actbio.2011.09.004

    Article  CAS  Google Scholar 

  13. Haider AJ, Al–Anbari RH, Kadhim GR, Salame CT (2017) Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119(332):345. https://doi.org/10.1016/j.egypro.2017.07.117

    Article  CAS  Google Scholar 

  14. Gulati K, Ivanovski S (2017) Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Deliv 14:1009–1024. https://doi.org/10.1080/17425247.2017.1266332

    Article  CAS  Google Scholar 

  15. Manfroi DC, Dos Anjos A, Cavalheiro AA, Perazolli LA, Varela JA, Zaghete MA (2014) Titanate nanotubes produced from microwave-assisted hydrothermal synthesis: photocatalytic and structural properties. Ceram Int 40:14483–14491. https://doi.org/10.1016/j.ceramint.2014.07.007

    Article  CAS  Google Scholar 

  16. Viana BC, Ferreira OP, Souza Filho AG, Rodrigues CM, Moraes SG, Mendes Filho J, Alves OL (2009) Decorating titanate nanotubes with CeO 2 nanoparticles. J Phys Chem C 113:20234–20239. https://doi.org/10.1021/jp9068043

    Article  CAS  Google Scholar 

  17. Xu XG, Ding X, Chen Q, Peng L-M (2006) Electronic, optical, and magnetic properties of Fe-intercalated H 2 Ti 3 O 7 nanotubes: first-principles calculations and experiments. Phys Rev B 73:165403. https://doi.org/10.1103/PhysRevB.73.165403

    Article  CAS  Google Scholar 

  18. Viana BC, Ferreira OP, Filho AGS, Hidalgo AA, Filho JM, Alves OL (2011) Alkali metal intercalated titanate nanotubes: a vibrational spectroscopy study. Vib Spectrosc 55:183–187. https://doi.org/10.1016/j.vibspec.2010.11.007

    Article  CAS  Google Scholar 

  19. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315. https://doi.org/10.1088/0031-9155/49/18/N03

    Article  CAS  Google Scholar 

  20. Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S (2016) Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol*Biol*Phys 94:189–205. https://doi.org/10.1016/j.ijrobp.2015.09.032

    Article  Google Scholar 

  21. Yang Y, Zhang Y, Hu R, Huang Q, Wu K, Zhang L, Tang P, Lin C (2017) Antibacterial and cytocompatible AgNPs constructed with the assistance of Mefp-1 for orthopaedic implants. RSC Adv 7:38434–38443. https://doi.org/10.1039/C7RA06449G

    Article  CAS  Google Scholar 

  22. Carreno N, Fajardo H, Maciel A, Valentini A, Pontes F, Probst L, Leite E, Longo E (2004) Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. J Mol Catal A: Chem 207:91–96. https://doi.org/10.1016/S1381-1169(03)00496-5

    Article  CAS  Google Scholar 

  23. Gomez-Polo C, Larumbe S, Gil A, Muñoz D, Fernández LR, Barquín LF, García-Prieto A, Fdez-Gubieda ML, Muela A (2021) Improved photocatalytic and antibacterial performance of Cr doped TiO2 nanoparticles. Surf Interface 22:100867. https://doi.org/10.1016/j.surfin.2020.100867

    Article  CAS  Google Scholar 

  24. Ferreira VC, Nunes MR, Silvestre AJ, Monteiro OC (2013) Synthesis and properties of Co-doped titanate nanotubes and their optical sensitization with methylene blue. Mater Chem Phys 142:355–362. https://doi.org/10.1016/j.matchemphys.2013.07.029

    Article  CAS  Google Scholar 

  25. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2014) Development of gallium oxide power devices: development of gallium oxide power devices. Phys Status Solidi A 211:21–26. https://doi.org/10.1002/pssa.201330197

    Article  CAS  Google Scholar 

  26. Kumar D, Chadda S, Sharma J, Surain P (2013) Syntheses, spectral characterization, and antimicrobial studies on the coordination compounds of metal ions with Schiff base containing both aliphatic and aromatic hydrazide moieties. Bioinorg Chem Appl 2013:1–10. https://doi.org/10.1155/2013/981764

    Article  CAS  Google Scholar 

  27. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2012) Gallium oxide (Ga 2 O 3) metal-semiconductor field-effect transistors on single-crystal β-Ga 2 O 3 (010) substrates. Appl Phys Lett 100:013504. https://doi.org/10.1063/1.3674287

    Article  CAS  Google Scholar 

  28. Dong J, Fang D, Zhang L, Shan Q, Huang Y (2019) Gallium-doped titania nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm. Materialia 5:100209. https://doi.org/10.1016/j.mtla.2019.100209

    Article  CAS  Google Scholar 

  29. Sales DA, Marques TMF, Ghosh A, Gusmão SBS, Vasconcelos TL, Luz-Lima C, Ferreira OP, Hollanda LM, Lima IS, Silva-Filho EC, Dittz D, Lobo AO, Viana BC (2020) Synthesis of silver-cerium titanate nanotubes and their surface properties and antibacterial applications. Mater Sci Eng: C 115:111051. https://doi.org/10.1016/j.msec.2020.111051

    Article  CAS  Google Scholar 

  30. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888. https://doi.org/10.1172/JCI30783

    Article  CAS  Google Scholar 

  31. RahimnejadYazdi A, Torkan L, Waldman SD, Towler MR (2018) Development of a novel bioactive glass suitable for osteosarcoma-related bone grafts. J Biomed Mater Res 106:1186–1193. https://doi.org/10.1002/jbm.b.33930

    Article  CAS  Google Scholar 

  32. Narayanasamy P, Switzer BL, Britigan BE (2015) Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep 5:8824. https://doi.org/10.1038/srep08824

    Article  CAS  Google Scholar 

  33. Ganguly BN, Verma V, Chatterjee D, Satpati B, Debnath S, Saha P (2016) Study of gallium oxide nanoparticles conjugated with β-cyclodextrin: an application to combat cancer. ACS Appl Mater Interfaces 8:17127–17137. https://doi.org/10.1021/acsami.6b04807

    Article  CAS  Google Scholar 

  34. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75. https://doi.org/10.1016/j.jfda.2014.01.005

    Article  CAS  Google Scholar 

  35. Pathakoti K, Morrow S, Han C, Pelaez M, He X, Dionysiou DD, Hwang H-M (2013) Photoinactivation of Escherichia coli by sulfur-doped and nitrogen–fluorine-codoped TiO 2 nanoparticles under solar simulated light and visible light irradiation. Environ Sci Technol 47:9988–9996. https://doi.org/10.1021/es401010g

    Article  CAS  Google Scholar 

  36. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868. https://doi.org/10.1007/s00253-011-3213-7

    Article  CAS  Google Scholar 

  37. Valencia S, Marin JM, Restrepo G (2010) Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment~!2009-10-14~!2009-10-30~!2010-01-27~! TOMSJ 4:9–14. https://doi.org/10.2174/1874088X01004020009

    Article  CAS  Google Scholar 

  38. Dittz D, Figueiredo C, Lemos F, Viana C, Andrade S, Souza-Fagundes E, Fujiwara R, Salas C, Lopes M (2015) Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. IJMS 16:7027–7044. https://doi.org/10.3390/ijms16047027

    Article  CAS  Google Scholar 

  39. Chen Q, Du GH, Zhang S, Peng L-M (2002) The structure of trititanate nanotubes. Acta Crystallogr B Struct Sci 58:587–593. https://doi.org/10.1107/S0108768102009084

    Article  CAS  Google Scholar 

  40. Kim G-S, Seo H-K, Godble VP, Kim Y-S, Yang O-B, Shin H-S (2006) Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Commun 8:961–966. https://doi.org/10.1016/j.elecom.2006.03.037

    Article  CAS  Google Scholar 

  41. Marques TMF, Luz-Lima C, Sacilloti M, Fujisawa K, Perea-Lopez N, Terrones M, Silva EN, Ferreira OP, Viana BC (2017) Photoluminescence enhancement of titanate nanotubes by insertion of rare earth ions in their interlayer spaces. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/3809807

    Article  CAS  Google Scholar 

  42. Hong S, Rhee CK, Sohn Y (2019) Photoluminescence, electro- and thermal catalytic properties of bare and Eu(III)-doped GaOOH, α- and β-Ga2O3 nanorods. J Alloy Compd 774:11–17. https://doi.org/10.1016/j.jallcom.2018.09.381

    Article  CAS  Google Scholar 

  43. Girija K, Thirumalairajan S, Mastelaro VR, Mangalaraj D (2015) Photocatalytic degradation of organic pollutants by shape selective synthesis of β-Ga 2 O 3 microspheres constituted by nanospheres for environmental remediation. J Mater Chem A 3:2617–2627. https://doi.org/10.1039/C4TA05295A

    Article  CAS  Google Scholar 

  44. Muruganandham M, Amutha R, Wahed MSMA, Ahmmad B, Kuroda Y, Suri RPS, Wu JJ, Sillanpää MET (2012) Controlled fabrication of α-GaOOH and α-Ga 2 O 3 self-assembly and its superior photocatalytic activity. J Phys Chem C 116:44–53. https://doi.org/10.1021/jp205348p

    Article  CAS  Google Scholar 

  45. Marques TMF, Strayer ME, Ghosh A, Silva A, Ferreira OP, Fujisawa K, Alves Da Cunha JR, Abreu GJP, Terrones M, Mallouk TE, Viana BC (2017) Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. J Phys Chem Solids 111:335–342. https://doi.org/10.1016/j.jpcs.2017.08.027

    Article  CAS  Google Scholar 

  46. Mazali IO, Viana BC, Alves OL, Mendes Filho J, Souza Filho AG (2007) Structural and vibrational properties of nanocrystals. J Phys Chem Solids 68:622–627. https://doi.org/10.1016/j.jpcs.2007.02.001

    Article  CAS  Google Scholar 

  47. Yoshida R, Suzuki Y, Yoshikawa S (2005) Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater Chem Phys 91:409–416. https://doi.org/10.1016/j.matchemphys.2004.12.010

    Article  CAS  Google Scholar 

  48. Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241:173–183. https://doi.org/10.1016/j.colsurfa.2004.04.030

    Article  CAS  Google Scholar 

  49. Liu Y, Liu R, Liu C, Luo S, Yang L, Sui F, Teng Y, Yang R, Cai Q (2010) Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film. J Hazard Mater 182:912–918. https://doi.org/10.1016/j.jhazmat.2010.07.007

    Article  CAS  Google Scholar 

  50. Marques TMF, Ferreira OP, Da Costa JAP, Fujisawa K, Terrones M, Viana BC (2015) Study of the growth of CeO2 nanoparticles onto titanate nanotubes. J Phys Chem Solids 87:213–220. https://doi.org/10.1016/j.jpcs.2015.08.022

    Article  CAS  Google Scholar 

  51. Lorençon E, Alves DCB, Krambrock K, Ávila ES, Resende RR, Ferlauto AS, Lago RM (2014) Oxidative desulfurization of dibenzothiophene over titanate nanotubes. Fuel 132:53–61. https://doi.org/10.1016/j.fuel.2014.04.020

    Article  CAS  Google Scholar 

  52. Lingamdinne LP, Singh J, Choi J-S, Chang Y-Y, Yang J-K, Karri RR, Koduru JR (2018) Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar. J Mol Liq 265:416–427. https://doi.org/10.1016/j.molliq.2018.06.022

    Article  CAS  Google Scholar 

  53. Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) XPS Study of the reduction of cerium dioxide. Surf Interface Anal 20:508–512. https://doi.org/10.1002/sia.740200604

    Article  CAS  Google Scholar 

  54. La Porta FA, Ferrer MM, De Santana YVB, Raubach CW, Longo VM, Sambrano JR, Longo E, Andrés J, Li MS, Varela JA (2013) Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method. J Alloy Compd 556:153–159. https://doi.org/10.1016/j.jallcom.2012.12.081

    Article  CAS  Google Scholar 

  55. Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) Electronic structure, growth mechanism and photoluminescence of CaWO 4 crystals. CrystEngComm 14:853–868. https://doi.org/10.1039/C1CE05977G

    Article  CAS  Google Scholar 

  56. Méndez-Galván M, Celaya CA, Jaramillo-Quintero OA, Muñiz J, Díaz G, Lara-García HA (2021) Tuning the band gap of M-doped titanate nanotubes (M = Fe Co, Ni, and Cu): an experimental and theoretical study. Nanoscale Adv 3:1382–1391. https://doi.org/10.1039/D0NA00932F

    Article  Google Scholar 

  57. Varley JB, Weber JR, Janotti A, Van De Walle CG (2010) Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett 97:142106. https://doi.org/10.1063/1.3499306

    Article  CAS  Google Scholar 

  58. Jangir R, Porwal S, Tiwari P, Mondal P, Rai SK, Srivastava AK, Bhaumik I, Ganguli T (2016) Correlation between surface modification and photoluminescence properties of β-Ga 2 O 3 nanostructures. AIP Adv 6:035120. https://doi.org/10.1063/1.4944908

    Article  CAS  Google Scholar 

  59. Orita M, Ohta H, Hirano M, Hosono H (2000) Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett 77:4166–4168. https://doi.org/10.1063/1.1330559

    Article  CAS  Google Scholar 

  60. Cavalcante LS, Batista NC, Badapanda T, Costa MGS, Li MS, Avansi W, Mastelaro VR, Longo E, Espinosa JWM, Gurgel MFC (2013) Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders. Mater Sci Semicond Process 16:1035–1045. https://doi.org/10.1016/j.mssp.2012.12.010

    Article  CAS  Google Scholar 

  61. Zaki AH, Lee M-J (2019) Effects of K +, Mg 2+, Ca 2+, Zn 2+, La 3+, Cr 3+, Ce 3+, Ce 4+, and Mo 5+ doping on the adsorption performance and optical properties of sodium titanate nanotubes. ACS Omega 4:19623–19634. https://doi.org/10.1021/acsomega.9b02229

    Article  CAS  Google Scholar 

  62. Gusmão SBS, Ghosh A, De Menezes AS, Pereira AFM, Lopes MTP, Souza MK, Dittz D, Abreu GJP, Pinto LSS, Maia Filho ALM, Gusmão GOM, Webster TJ, Lobo AO, Viana BC (2022) Nanohydroxyapatite/titanate nanotube composites for bone tissue regeneration. JFB 13:306. https://doi.org/10.3390/jfb13040306

    Article  CAS  Google Scholar 

  63. Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB, Ligabue R (2020) New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. Mater Sci Eng: C 110:110662. https://doi.org/10.1016/j.msec.2020.110662

    Article  CAS  Google Scholar 

  64. Fenyvesi F, Kónya Z, Rázga Z, Vecsernyés M, Kása P, Pintye-Hódi K, Bácskay I (2014) Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells. AAPS PharmSciTech 15:858–861. https://doi.org/10.1208/s12249-014-0115-x

    Article  CAS  Google Scholar 

  65. Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR (2022) Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J Mol Struct 1249:131556. https://doi.org/10.1016/j.molstruc.2021.131556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We recognize the Geratec Laboratory of the State University of Piauí (UESPI), city of Teresina-PI and Francisco Henrique Lopes and Prof. Laecio Cavalcante for collaborating with the measurements of UV-Vis spectroscopy. Prof. F.C. Oliveira acknowledges the support of Estácio Teresina from the Productivity Research Program.

Funding

This work was supported by MCTI/CNPQ/Universal 28/2018 (grant #427084/2018–0). Prof. B.C. Viana acknowledges the support of CNPq-PQ-06/2019 (grant # 307901/2019–0), CNPq Nº 26/2021 (grant # 400998/2022–0), CNPq Nº 09/2022 (grant # 303315/2022–9), CNPq Nº 026/2021 (grant # 400998/2022–0), and Auxilio ao Pesquisador—PRPG/UFPI Nº 03/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartolomeu C. Viana.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1738 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Costa, K.R.B., de Sá, M.L., de Carvalho Oliveira, F. et al. Titanate nanotubes modified with gallium and cerium and their cytotoxic activity. J Nanopart Res 25, 177 (2023). https://doi.org/10.1007/s11051-023-05824-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05824-0

Keywords

Navigation