Skip to main content
Log in

Electrolytic synthesis of metallic aluminum nanoparticles in aqueous solution

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present paper describes the preparation of metallic aluminum (Al) nanoparticles in an aqueous solution. An aqueous colloidal solution containing metallic Al nanoparticles was prepared by electrolyzing an Al salt aqueous solution using two metallic Al plate electrodes. Simultaneous electrolysis and sonication was necessary for the successful synthesis of metallic Al particles with a cubic crystal structure. Metallic Al particles were mainly produced on the cathode. Electrolysis under sonication was performed under various conditions. The morphology of the particles strongly depended on the temperature, electrolysis time, and sonication frequency, which could be mainly explained by changes in particle collision frequency and dissolution, particle collision frequency, and attenuation in the medium and/or cavitation stability, respectively. Metallic Al particles could be prepared using a stainless-steel plate as the cathode. Under the appropriate conditions, metallic Al particles with particle sizes of ca. 75–130 nm could be synthesized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sarafraz MM, Christo FC, Tran NN, Fulcheri L, Hessel V (2022) Thermal plasma-aided chemical looping carbon dioxide dissociation for fuel production from aluminium particles. Energy Convers Manag 257:115413. https://doi.org/10.1016/j.enconman.2022.115413

    Article  CAS  Google Scholar 

  2. Etminanbakhsh M, Allahkaram SR (2023) Reaction of aluminum particles with superheated steam to generate hydrogen gas as a readily usable clean fuel. Fuel 332:126011. https://doi.org/10.1016/j.fuel.2022.126011

    Article  CAS  Google Scholar 

  3. Liu W, Zhang H, Shao Y, Zhang H, Zhu J (2020) Preparation of aluminium metallic pigmented powder coatings with high color stability using a novel method: microwave bonding. Prog Org Coat 147:105787. https://doi.org/10.1016/j.porgcoat.2020.105787

    Article  CAS  Google Scholar 

  4. Gromov AA, Förter-Barth U, Teipel U (2006) Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: characterisation and reactivity, with air and water. Powder Technol 164:111–115. https://doi.org/10.1016/j.powtec.2006.03.003

    Article  CAS  Google Scholar 

  5. Antony JK, Vasa NJ, Chakravarthy SR, Sarathi R (2010) Understanding the mechanism of nano-aluminum particle formation by wire explosion process using optical emission technique. J Quant Spectrosc Radiat Transf 111:2509–2516. https://doi.org/10.1016/j.jqsrt.2010.07.011

    Article  CAS  Google Scholar 

  6. Lerner MI, Glazkova EA, Lozhkomoev AS, Svarovskaya NV, Bakina OV, Pervikov AV, Psakhie SG (2016) Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol 295:307–314. https://doi.org/10.1016/j.powtec.2016.04.005

    Article  CAS  Google Scholar 

  7. Mathe VL, Varma V, Raut S, Nandi AK, Pant A, Prasanth H, Pandey RK, Bhoraskar SV, Das AK (2016) Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route. Appl Surf Sci 368:16–26. https://doi.org/10.1016/j.apsusc.2016.01.246

    Article  CAS  Google Scholar 

  8. Abdelkader EM, Jelliss PA, Buckner SW (2016) Main group nanoparticle synthesis using electrical explosion of wires, Nano-Struct. Nano-Objects 7:23–31. https://doi.org/10.1016/j.nanoso.2016.05.001

    Article  CAS  Google Scholar 

  9. Karthik PS, Chandrasekhar B, Chakravarty D, PVV S, Chakravadhanula VSK, Rao TN (2018) Propellant grade ultrafine aluminum powder by RF induction plasma. Adv Powder Technol 29:804–812. https://doi.org/10.1016/j.apt.2017.12.024

    Article  CAS  Google Scholar 

  10. García-Caballero V, Mohammed-Ibrahim HK, Giner-Casares JJ, Cano M (2022) Influence of the synthesis route on the electrocatalytic performance for ORR of citrate-stabilized gold nanoparticles. Electrochem Commun 142:107364. https://doi.org/10.1016/j.elecom.2022.107364

    Article  CAS  Google Scholar 

  11. Khan MAR, Mamun MSA, Ara MH (2021) Review on platinum nanoparticles: synthesis, characterization, and applications. Microchem J 171:106840. https://doi.org/10.1016/j.microc.2021.106840

    Article  CAS  Google Scholar 

  12. Chaurasia PK, Bharati SL, Yadava S (2022) Nano-reduction of gold and silver ions: a perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. Curr Res Microb Sci 3:100098. https://doi.org/10.1016/j.crmicr.2021.100098

    Article  CAS  Google Scholar 

  13. Nie H, Schoenitz M, Dreizin EL (2012) Calorimetric investigation of the aluminum-water reaction. Int J Hydrog Energy 37:11035–11045. https://doi.org/10.1016/j.ijhydene.2012.05.012

    Article  CAS  Google Scholar 

  14. Haber JA, Buhro WE (1998) Kinetic Instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J Am Chem Soc 120:10847–10855. https://doi.org/10.1021/ja981972y

    Article  CAS  Google Scholar 

  15. Cui Y, Zhao S, Tao D, Liang Z, Huang D, Xu Z (2014) Synthesis of size-controlled and discrete core-shell aluminum nanoparticles with a wet chemical process. Mater Lett 121:54–57. https://doi.org/10.1016/j.matlet.2014.01.122

    Article  CAS  Google Scholar 

  16. Riegsinger S, Popescu R, Gerthsen D, Feldmann C (2022) Room-temperature liquid-phase synthesis of aluminium nanoparticles. Chem Commun 58:499. https://doi.org/10.1039/d2cc01846b

    Article  CAS  Google Scholar 

  17. Meziani MJ, Bunker CE, Lu F, Li H, Wang W, Guliants EA, Quinn RA, Sun YP (2009) Formation and properties of stabilized aluminum nanoparticles. ACS Appl Mater Interfaces 1:703–709. https://doi.org/10.1021/am800209m

    Article  CAS  Google Scholar 

  18. Lee HM, Choi SY, Yun JY (2011) Preparation of aluminum–organic nanocomposite materials via wet chemical process. Adv Powder Technol 22:608–612. https://doi.org/10.1016/j.apt.2010.09.003

    Article  CAS  Google Scholar 

  19. Clark BD, DeSantis CJ, Wu G, Renard D, McClain MJ, Bursi L, Tsai AL, Nordlander P, Halas NJ (2019) Ligand-dependent colloidal stability controls the growth of aluminum nanocrystals. J Am Chem Soc 141:1716–1724. https://doi.org/10.1021/jacs.8b12255

    Article  CAS  Google Scholar 

  20. Jacobson CR, Solti D, Renard D, Yuan L, Lou M, Halas NJ (2020) Shining light on aluminum nanoparticle synthesis. Acc Chem Res 53:2020–2030. https://doi.org/10.1021/acs.accounts.0c00419

    Article  CAS  Google Scholar 

  21. Li M, Gao B, Liu C, Chen W, Shi Z, Hu X, Wang Z (2015) Electrodeposition of aluminum from AlCl3/acetamide eutectic solvent. Electrochim Acta 180:811–814. https://doi.org/10.1016/j.electacta.2015.09.008

    Article  CAS  Google Scholar 

  22. Ismail AS (2016) Nano-sized aluminum coatings from aryl-substituted imidazolium cation based ionic liquid. Egypt J Pet 25:525–530. https://doi.org/10.1016/j.ejpe.2015.11.007

    Article  Google Scholar 

  23. Elterman VA, Shevelin PY, Yolshina LA, Borozdin AV (2021) Electrodeposition of aluminium from the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride. Electrochim Acta 389:138715. https://doi.org/10.1016/j.electacta.2021.138715

    Article  CAS  Google Scholar 

  24. Bhujbal AV, Venkatesan KA, Bhanage BM (2021) Electrochemical deposition of nanocrystalline aluminum from a protic ionic liquid on mild steel. J Mol Liq 326:115275. https://doi.org/10.1016/j.molliq.2021.115275

    Article  CAS  Google Scholar 

  25. Cvetković VS, Vukićević NM, Jovićević N, Stevanović JS, Jovićević JN (2020) Aluminium electrodeposition under novel conditions from AlCl3-urea deep eutectic solvent at room temperature. Trans Nonferrous Metals Soc China 30:823–834. https://doi.org/10.1016/S1003-6326(20)65257-8

    Article  Google Scholar 

  26. Yoshida A, Yamauchi N, Nakashima K, Watanabe K, Koda H, Kunigami H, Kunigami H, Kobayashi Y (2020) Synthesis of metallic zinc nanoparticles by electrolysis. Appl Nanosci 10:3457–3464. https://doi.org/10.1007/s13204-020-01524-6

    Article  CAS  Google Scholar 

  27. Hosoya T, Yonezawa T, Yamauchi N, Nakashima K, Kobayashi Y (2021) Synthesis of metallic aluminum particles by electrolysis in aqueous solution. Micro Nano Syst Lett 9:14. https://doi.org/10.1186/s40486-021-00141-4

    Article  Google Scholar 

  28. Shabana S, Sonawane SH, Ranganathan V, Pujjalwar PH, Pinjari DV, Bhanvase BA, Gogate PR, Ashokkumar M (2017) Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate. Ultrason Sonochem 36:59–69. https://doi.org/10.1016/j.ultsonch.2016.11.020

    Article  CAS  Google Scholar 

  29. L’Haridon-Quaireau S, Laot M, Colas K, Kapusta B, Delpech S, Gosset D (2020) Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers. J Alloys Compd 833:155146. https://doi.org/10.1016/j.jallcom.2020.155146

    Article  CAS  Google Scholar 

  30. Ryl J, Wysocka J, Cieslik M, Gerengi H, Ossowski T, Krakowiak S, Niedzialkowski P (2019) Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments. Electrochim Acta 304:263–274. https://doi.org/10.1016/j.electacta.2019.03.012

    Article  CAS  Google Scholar 

  31. Zawrah MF, Wassel AR, Youness RA, Taha MA (2022) Recycling of aluminum dross and silica fume wastes for production of mullite-containing ceramics: powder preparation, sinterability and properties. Ceram Int 48:31661–31671. https://doi.org/10.1016/j.ceramint.2022.07.087

    Article  CAS  Google Scholar 

  32. Zhang L, Wang S, Su X, Li X, Zou M (2022) Preparation and characterization of core-shell Al@PFHP with improving the combustion and ignition properties of aluminum powder. Particuology in press. https://doi.org/10.1016/j.partic.2022.08.008

  33. Darowicki K, Orlikowski J, Arutunowa A, Jurczak W (2006) The effect of tensile stresses on aluminium passive layer durability. Electrochim Acta 51:6091–6096. https://doi.org/10.1016/j.electacta.2005.12.054

    Article  CAS  Google Scholar 

  34. Luo L, Li Y, Sun X, Li J, Hu E, Liu Y, Tian Y, Yang XQ, Li Y, Lin WF, Kuang Y, Liu W, Sun X (2020) Synthesis and properties of stable sub-2-nm-thick aluminum nanosheets: oxygen passivation and two-photon luminescence. Chem 6:448–459. https://doi.org/10.1016/j.chempr.2019.11.004

    Article  CAS  Google Scholar 

  35. Kroll R, Kearns P, Usman BJ, Zhou X, Engelberg DL (2023) A novel approach to determine cathodic passivation characteristics and semiconducting properties of pure aluminium 99.5 wt% and aluminium alloy 7075-T6 with an electrochemical pen electrode. Corros Sci 211:110898. https://doi.org/10.1016/j.corsci.2022.110898

    Article  CAS  Google Scholar 

  36. Ziashahabia A, Poursalehi R (2015) The effects of surface oxidation and interparticle coupling on surface plasmon resonance properties of aluminum nanoparticles as a UV plasmonic material. Procedia Mater Sci 11:434–437. https://doi.org/10.1016/j.mspro.2015.11.030

    Article  CAS  Google Scholar 

  37. Katyal J, Badoni V (2021) Localized surface plasmon resonance and field enhancement of Au, Ag, Al and Cu nanoparticles having isotropic and anisotropic nanostructure. Mater Today: Proc 44:5012–5017. https://doi.org/10.1016/j.matpr.2021.01.027

    Article  CAS  Google Scholar 

  38. Ahmad AL, Idrus NF, Othman MR (2005) Preparation of perovskite alumina ceramic membrane using sol-gel method. J Membr Sci 262:129–137. https://doi.org/10.1016/j.memsci.2005.06.042

    Article  CAS  Google Scholar 

  39. Tan H, Guo C (2011) Preparation of long alumina fibers by sol-gel method using malic acid. Trans Nonferrous Metals Soc China 21:1563–1567. https://doi.org/10.1016/S1003-6326(11)60897-2

    Article  CAS  Google Scholar 

  40. Roque-Ruiz JH, Cabrera-Ontiveros EA, González-García G, Reyes-López SY (2016) Thermal degradation of aluminum formate sol-gel; synthesis of α-alumina and characterization by 1H, 13C and 27Al MAS NMR and XRD spectroscopy. Results Phys 6:1096–1102. https://doi.org/10.1016/j.rinp.2016.11.052

    Article  Google Scholar 

  41. Niero DF, Montedo ORK, Bernardin AM (2022) Synthesis and characterization of nano α-alumina by an inorganic sol–gel method. Mater Sci Eng B 280:115690. https://doi.org/10.1016/j.mseb.2022.115690

    Article  CAS  Google Scholar 

  42. He F, Li W, Pang T, Zhou L, Wang C, Liu H, Li M, He X (2022) Hydrothermal synthesis of boehmite nanorods from alumina sols. Ceram Int 48:18035–18047. https://doi.org/10.1016/j.ceramint.2022.02.212

    Article  CAS  Google Scholar 

  43. Kaczmarek K, Hornowski T, Antal I, Rajnak M, Timko M, Józefczak A (2020) Sono-magnetic heating in tumor phantom. J Magn Magn Mater 500:166396. https://doi.org/10.1016/j.jmmm.2020.166396

    Article  CAS  Google Scholar 

  44. Nalesso S, Varlet G, Bussemaker MJ, Sear RP, Hodnett M, Monteagudo-Oliván R, Sebastián V, Coronas J, Lee J (2021) Sonocrystallisation of ZIF-8 in water with high excess of ligand: effects of frequency, power and sonication time. Ultrason Sonochem 76:105616. https://doi.org/10.1016/j.ultsonch.2021.105616

    Article  CAS  Google Scholar 

  45. Li J, Zhao HWK, Wang M, Chen D, Chen M (2020) Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films. Thin Solid Films 713:138359. https://doi.org/10.1016/j.tsf.2020.138359

    Article  CAS  Google Scholar 

  46. Chien YC, Weng HC (2021) Cost-effective technique to fabricate a tubular through-hole anodic aluminum oxide membrane using one-step anodization. Microelectron Eng 247:111589. https://doi.org/10.1016/j.mee.2021.111589

    Article  CAS  Google Scholar 

  47. Terashima A, Iwai M, Kikuchi T (2022) Nanomorphological changes of anodic aluminum oxide fabricated by anodizing in various phosphate solutions over a wide pH range. Appl Surf Sci 605:154687. https://doi.org/10.1016/j.apsusc.2022.154687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Takehiro Yonezawa of the Innovation Center, Mitsubishi Materials Corporation, Japan, for facilitating the fruitful discussion on the present work.

Author information

Authors and Affiliations

Authors

Contributions

Takefumi Hosoya: methodology, investigation, formal analysis, writing—original draft. Shiori Sato: methodology, investigation. Yoshiki Ueno: methodology, investigation. Ayumi Takahashi: methodology, investigation. Noriko Yamauchi: investigation, writing—review and editing. Shohei Tada: writing—review and editing. Yoshio Kobayashi: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Yoshio Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 169 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, T., Sato, S., Ueno, Y. et al. Electrolytic synthesis of metallic aluminum nanoparticles in aqueous solution. J Nanopart Res 25, 164 (2023). https://doi.org/10.1007/s11051-023-05814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05814-2

Keywords

Navigation