Skip to main content
Log in

Donor dynamics of reverse type I core/shell nanostructure embedded in inorganic and organic polymer matrices

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The role of surface ligand in tuning the carrier dynamics of reverse type I Al0.3Ga0.7As/ GaAs Core/Shell Nanostructure (CSN) has been investigated by considering two different ligand matrices: (i) inorganic 2D SiO2 and (ii) organic 2D conjugated polymer (2D-CP) with barrier potentials of 3.9 eV and 0.784 eV, respectively. The effective mass approximation combined with the variation technique is used to calculate the numerical results. The impact of ligand on the binding energy (BE) and diamagnetic susceptibility (χdia) of donor is examined for various donor locations (R) at varied core (Rc) and shell (Rs) radii. The spatial extent of carriers (red2) manifests the tunneling ability of electrons in the CSNs. The system exhibits diverse behavior and increased stability in the presence of organic 2D-CP and inorganic 2D SiO2 matrix. The present work will update the significance of ligand passivated reverse type I CSN for effective quantum tunneling devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ghosh Chaudhuri R, Paria S (2012) Chem Rev 112:2373. https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  2. Wang L, Lv Y, Lin J, Zhao J, Liu X, Zeng R, Wang X, Zou B (2021) J Mater Chem C 9:2483. https://doi.org/10.1039/d0tc05391k

    Article  CAS  Google Scholar 

  3. Reiss P, Protière M, Li L (2009) Small 5:154. https://doi.org/10.1002/smll.200800841

    Article  CAS  Google Scholar 

  4. Neo D, Cheng C, Stranks S, Fairclough S, Kim J, Kirkland A, Smith J, Snaith H, Assender H, Watt A (2014) Chem Mater 26:4004. https://doi.org/10.1021/cm501595u

    Article  CAS  Google Scholar 

  5. Rowland CE, Liu W, Hannah DC, Chan MK, Talapin DV, Schaller RD (2014) ACS Nano 8:977. https://doi.org/10.1021/nn405811p

    Article  CAS  Google Scholar 

  6. Carnevale DJ, Shatruk M, Strouse GF (2016) Chem Mater 28:5480. https://doi.org/10.1021/acs.chemmater.6b02062

    Article  CAS  Google Scholar 

  7. Wang XS, Dykstra TE, Salvador MR, Manners I, Scholes GD, Winnik MA (2004) J Am Chem Soc 126:7784. https://doi.org/10.1021/ja0489339

    Article  CAS  Google Scholar 

  8. Steckel JS, Zimmer JP, Coe-Sullivan S, Stott NE, Bulović V, Bawendi MG (2004) Angew Chemie - Int Ed 43:2154. https://doi.org/10.1002/anie.200453728

    Article  CAS  Google Scholar 

  9. Ibral A, Zouitine A, Assaid EM, Feddi EM, Dujardin F (2014) Phys B Condens Matter 449:261. https://doi.org/10.1016/j.physb.2014.05.045

    Article  CAS  Google Scholar 

  10. El Haouari M, Talbi A, Feddi E, El Ghazi H, Oukerroum A, Dujardin F (2017) Opt Commun 383:231. https://doi.org/10.1016/j.optcom.2016.09.019

    Article  CAS  Google Scholar 

  11. Zeng Z, Garoufalis CS, Terzis AF, Baskoutas S (2013) J Appl Phys 114. https://doi.org/10.1063/1.4813094

  12. Ganesan P, Senthilkumar L (2015) Physica E Low Dimens Syst Nanostruct 74:204. https://doi.org/10.1016/j.physe.2015.07.002

    Article  CAS  Google Scholar 

  13. Vignesh G, Nithiananthi P (2016) Superlattice Microstruct 92:232. https://doi.org/10.1016/j.spmi.2016.02.017

    Article  CAS  Google Scholar 

  14. Sudharshan MS, Subhash P, Shaik NB, Kalpana P, Jayakumar K, Reuben AMJD, Conf AIP (2015) Proc 1665:90044–90051. https://doi.org/10.1063/1.4918024

    Article  Google Scholar 

  15. Avazzadeh Z, Bahramiyan H, Khordad R, Mohammadi SA (2016) Eur Phys J Plus 131:1. https://doi.org/10.1140/epjp/i2016-16121-8

    Article  Google Scholar 

  16. Anikeeva PO, Halpert JE, Bawendi MG (2007) Nano Lett 7:2196. https://doi.org/10.1021/nl0703424

    Article  CAS  Google Scholar 

  17. Qu L, Peng X (2002) J Am Chem Soc 124:2049. https://doi.org/10.1021/ja017002j

    Article  CAS  Google Scholar 

  18. Reiss P, Bleuse J, Pron A (2002) Nano Lett 2:7–781. https://doi.org/10.1021/nl025596y

    Article  CAS  Google Scholar 

  19. Zhou J, Liu Y, Tang J, Tang W (2017) Mater Today 20:360. https://doi.org/10.1016/j.mattod.2017.02.006

    Article  CAS  Google Scholar 

  20. Chen Y, Friberg P, Gan L, Ning Z, Molna M (2011) Phys Chem Chem Phys 13:5848. https://doi.org/10.1039/c0cp02688c

    Article  CAS  Google Scholar 

  21. Kilina S, Ivanov S, Tretiak S (2009) J Am Chem Soc 131:7717. https://doi.org/10.1021/ja9005749

    Article  CAS  Google Scholar 

  22. Allan G, Delerue CM et al (1995) Phys Rev B 52:11982. https://doi.org/10.1103/PhysRevB.52.11982

    Article  CAS  Google Scholar 

  23. Konstantatos G, Howard I, Fischer A et al (2006) Nature 442:180. https://doi.org/10.1038/nature04855

    Article  CAS  Google Scholar 

  24. Bawendi MG, Caruge JM, Halpert JE, Wood V, Bulovic V (2008) Nature Photonics 2:247. https://doi.org/10.1038/nphoton.2008.34

    Article  CAS  Google Scholar 

  25. Gur I, Fromer NA, Geier ML et al (2005) Science 310:462. https://doi.org/10.1126/science.1117908

    Article  CAS  Google Scholar 

  26. Yu XF, Chen LD, Li M, Xie MY, Zhou L, Li Y, Wang QQ (2008) Adv Mater 20:4118. https://doi.org/10.1002/adma.200801224

    Article  CAS  Google Scholar 

  27. Gutzler R (2016) Phys Chem Chem Phys 18:29092. https://doi.org/10.1039/C6CP06101J

    Article  CAS  Google Scholar 

  28. Dallali L, Jaziri S et al (2015) Solid State Commun 209:33. https://doi.org/10.1016/j.ssc.2015.02.012

    Article  CAS  Google Scholar 

  29. Gao Z, Dong X, Li N, Ren J (2017) Nano Lett 17:772. https://doi.org/10.1021/acs.nanolett.6b03921

    Article  CAS  Google Scholar 

  30. Büchner C, Heyde M (2017) Prog Surf Sci 92:341. https://doi.org/10.1016/j.progsurf.2017.09.001

    Article  CAS  Google Scholar 

  31. Gao E, Xie B, Xu Z (2016) J App Phys 119:014301. https://doi.org/10.1063/1.4939279

    Article  CAS  Google Scholar 

  32. Chen JT, Hsu C (2011) Polym Chem 2:2707. https://doi.org/10.1039/C1PY00275A

    Article  CAS  Google Scholar 

  33. Lee C, Giridhar T, Choi J, Kim S, Kim Y, Lee W, Cho H, Wang C, Ade PH, Kim BJ (2017) Chem Mater 29:9407. https://doi.org/10.1021/acs.chemmater.7b03495

    Article  CAS  Google Scholar 

  34. Xie J, Gu P, Zhang Q (2017) ACS Energy Lett 2:1985. https://doi.org/10.1021/acsenergylett.7b00494

    Article  CAS  Google Scholar 

  35. Anitha B, Nithiananthi P (2019) Superlattices Microstructures 135:106288. https://doi.org/10.1016/j.spmi.2019.106288

    Article  CAS  Google Scholar 

  36. Nithiananthi P, Jayakumar K (2007) Int J Nanosci 6:1. https://doi.org/10.1142/S0219581X07004250

    Article  Google Scholar 

  37. Yang P, Tretiak S, Ivanov S (2011) J Clust Sci 22:405. https://doi.org/10.1007/s10876-011-0398-y

    Article  CAS  Google Scholar 

  38. Gao Y, Zhou B, Kang SG, Xin M et al (2014) RSC Adv 4:27146. https://doi.org/10.1039/c4ra03202k

    Article  CAS  Google Scholar 

  39. Schnitzenbaumer KJ, Dukovic G (2014) J Phys Chem C 118:28170. https://doi.org/10.1021/jp509224n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Vignesh G, thanks St. Joseph’s Research Institute (SJRI),

Bangalore for the constant support and encouragement.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Computation and theoretical data collection and analysis were performed by Anitha Balakrishnan, Vignesh Ganesan and Nithiananthi Perumal. The first draft of the manuscript was written by Anitha Balakrishnan followed by subsequent corrections and modifications by the other authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nithiananthi Perumal.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on paper presented at the 7th International Conference on Nanoscience and Nanotechnology (ICONN-2023).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, A., Ganesan, V. & Perumal, N. Donor dynamics of reverse type I core/shell nanostructure embedded in inorganic and organic polymer matrices. J Nanopart Res 25, 162 (2023). https://doi.org/10.1007/s11051-023-05809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05809-z

Keywords

Navigation