Skip to main content

Advertisement

Log in

Trends in the use of montmorillonite as a delivery system for active substances

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The use of montmorillonite has been investigated as a delivery system for active substances and few studies report discussions and visualization of publications on this topic. Thus, the objective of this study is to explore related research fields from a bibliometric perspective, characterize current trends, and present visual representations of the last decades. In this study, the analysis of the publications was performed using the RStudio v.1.3.959 software and the R programming language from the Bibliometrix package. A total of 778 articles were analyzed. From 1976 to 2023, there was a tendency for publications to grow, with an increase of 217.39% in 10 years. China (195 publications and 4297 citations) and Nir S. (18 publications, 744 citations, 5 articles as last author) were the most productive and impactful country and author, respectively. The co-occurrence cluster analysis of the 50 keywords form clusters with “montmorillonite,” “adsorption,” and “controlled release” and clusters “nanoparticles,” “delivery,” and “nanocomposites,” which were the most used keywords. In a coupling cluster analysis, publications using montmorillonite with drugs achieved a much greater publishing impact than with other materials. Trends in publications allocate montmorillonite for the release of active substances considering the state of ionization, pH, modification by inclusion of organic compounds, water displacement, change in interlamellar characteristics, use of chitosan, and alginate forming nanocomposites, microsphere, granules, nanoparticles, and adsorption, the last three being the most impactful. In this way a multifaceted material has composed formulations of substance delivery system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Elaborated by the authors, using Discovery Studio Visualizer 3.5 software, adapted from

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data was used for research described in the article.

References

  1. López-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36(1–3):51–63. https://doi.org/10.1016/j.clay.2006.06.016

    Article  CAS  Google Scholar 

  2. Guggenheim S, Martin RT, Alietti A, Drits VA, Formoso MLL, Galán E, Wicks FJ (1995) Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner 43(2):255–256. https://doi.org/10.1346/CCMN.1995.0430213

    Article  CAS  Google Scholar 

  3. Viseras C, Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C (2019) Clay minerals in skin drug delivery. Clays Clay Miner 67(1):59–71. https://doi.org/10.1007/s42860-018-0003-7

    Article  CAS  Google Scholar 

  4. López-Galindo A, Viseras C (2004) Pharmaceutical and cosmetic applications of clays. In Clay surfaces: fundamentals and applications (1st ed., Vol. 1, pp. 268–289)

  5. USP United States Pharmacopeial Convention (2019) The United States pharmacopeia USP42, the national formulary NF37/United States Pharmacopeial Convention. In The United States pharmacopeia USP42, the national formulary NF37 / United States Pharmacopeial Convention (First edition., Vol. 7). Rockville, Maryland: United States Pharmacopeial Convention

  6. Rowe R (2009) Handbook of pharmaceutical excipients. In Raymond C Rowe, Paul J Sheskey, & Marian E Quinn (Eds.), Handbook of pharmaceutical excipients (6th ed., Vol. 6, pp. 0–917). London

  7. Iborra CV, Cultrone G, Cerezo P, Aguzzi C, Baschini MT, Vallés J, López-Galindo A (2006) Characterisation of northern Patagonian bentonites for pharmaceutical uses. Appl Clay Sci 31(3–4):272–281. https://doi.org/10.1016/j.clay.2005.11.002

    Article  CAS  Google Scholar 

  8. Hacıosmanoğlu GG, Mejías C, Martín J, Santos JL, Aparicio I, Alonso E (2022) Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: a comprehensive review. J Environ Manag 317. https://doi.org/10.1016/j.jenvman.2022.115397

  9. Brigatti MF, Galan E, Theng BKG (2006) Structure and mineralogy of clay minerals, In: Bergaya, F., Lagaly, G. (Eds.), Chapter 2 in the Handbook of clay science, 2nd ed. (Elsevier Ltd., Ed.) (1st ed., Vol. 1). https://doi.org/10.1016/B978-0-08-098258-8.09989-2

  10. Silva DTC, Arruda IES, França LM, França DB, Fonseca MG, Soares MFLR, … Soares-Sobrinho JL (2019) Tamoxifen/montmorillonite system – effect of the experimental conditions. Appl Clay Sci 180(September 2018):105142. https://doi.org/10.1016/j.clay.2019.105142

  11. del Mar Orta M, Martín J, Medina-Carrasco S, Santos JL, Aparicio I (2019) Alonso E (2019) Adsorption of propranolol onto montmorillonite: kinetic, isotherm and pH studies. Appl Clay Sci 173(July 2018):107–114. https://doi.org/10.1016/j.clay.2019.03.015

    Article  CAS  Google Scholar 

  12. Krupskaya V, Novikova L, Tyupina E, Belousov P, Dorzhieva O, Zakusin S, … Belchinskaya L (2019) The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Appl Clay Sci 172(February):1–10. https://doi.org/10.1016/j.clay.2019.02.001

  13. Silva DTC, Fonseca MG, Borrego-sánchez A, Soares MFR, Viseras C, Sainz-díaz CI, Sobrinho JLS (2020) Adsorption of tamoxifen on montmorillonite surface. Microporous Mesoporous Mater 110012. https://doi.org/10.1016/j.micromeso.2020.110012

  14. Borrego-Sánchez A, Carazo E, Aguzzi C, Viseras C, Sainz-Díaz CI (2018) Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl Clay Sci 160(October 2017):173–179. https://doi.org/10.1016/j.clay.2017.12.024

    Article  CAS  Google Scholar 

  15. Stoch L (1990) Chemical reactions of clay minerals and their utilization. Sci Geol Mém 89:111–120

    Google Scholar 

  16. Bergaya F, Lagaly G (2006) Chapter 1 General introduction: clays, clay minerals, and clay science. Dev Clay Sci1(C):1–18. https://doi.org/10.1016/S1572-4352(05)01001-9

  17. Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol 39:200–209. https://doi.org/10.1016/j.jddst.2017.03.023

    Article  CAS  Google Scholar 

  18. Wicklein B (2011) Bio-nanohybrid materials based on clays and phospholipids (Thesis). Instituto de Ciencia de Materiales de Madrid, Madrid

    Google Scholar 

  19. Uddin F (2018) Montmorillonite: an introduction to properties and utilization. In Current topics in the utilization of clay in industrial and medical applications (1st ed., Vol. 1, pp. 3–24). InTech. https://doi.org/10.5772/intechopen.77987

  20. Liu JH, Cai WK, Khatoon N, Yu WH, Zhou CH (2021) On how montmorillonite as an ingredient in animal feed functions. Appl Clay Sci 202:0–105963. https://doi.org/10.1016/j.clay.2020.105963

  21. Farahat MM, Abdel Khalek MA, Sanad MMS (2022) Affordable and reliable cationic-anionic magnetic adsorbent: processing, characterization, and heavy metals removal. J Clean Prod 360. https://doi.org/10.1016/j.jclepro.2022.132178

  22. Mohammad-Rezaei R, Khalilzadeh B, Rahimi F, Moradi S, Shahlaei M, Derakhshankhah H, Jaymand M (2022) Simultaneous removal of cationic and anionic dyes from simulated industrial effluents using a nature-inspired adsorbent. Environ Res 214. https://doi.org/10.1016/j.envres.2022.113966

  23. Shattar SFA, Zakaria NA, Foo KY (2019) Preparation of a montmorillonite-derived adsorbent for the practical treatment of ionic and nonionic pesticides. J Market Res 8(5):4713–4724. https://doi.org/10.1016/j.jmrt.2019.08.017

    Article  CAS  Google Scholar 

  24. Wang F, Pan F, Li G, Zhang P, Wang N (2021) Construction of spherical montmorillonite supported Cu-based catalyst doping with a covalent organic framework for 4-nitrophenol removal. Appl Clay Sci 214. https://doi.org/10.1016/j.clay.2021.106278

  25. Wadhawa GC, Valvi AK, Mohite RD, Patil DD, Patil B, Gavit HJ (2022) An Organo-Heterogeneous catalyst for synthesis of benzimidazole derivatives using nanoparticles synthesized from Plant extract and supported on Montmorillonite K10. Mater Today: Proc 58:764–768. https://doi.org/10.1016/j.matpr.2022.03.100

    Article  CAS  Google Scholar 

  26. Al Kausor M, Sen Gupta S, Bhattacharyya KG, Chakrabortty D (2022) Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: a review on current status of the art. Inorg Chem Commun 143:0–109686. https://doi.org/10.1016/j.inoche.2022.109686

  27. Mohan C, Kumari N (2022) Synthesis of acid activated and silicotungstic acid (STA) intercalated montmorillonite clay as green catalyst. Mater Today: Proc 56:971–975. https://doi.org/10.1016/j.matpr.2022.03.093

    Article  CAS  Google Scholar 

  28. Wang G, Ding C, Liu N, Liu H, Yang J, Ma S, … Zhao H (2022) Complexant-montmorillonite nanocomposites for heavy metal binding in sulfide tailing. J Mater Res Technol 17:329–341. https://doi.org/10.1016/j.jmrt.2022.01.019

  29. Zhang H, Jiang L, Wang H, Li Y, Chen J, Li J, … Xiong T (2022) Evaluating the remediation potential of MgFe2O4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. Chemosphere 299. https://doi.org/10.1016/j.chemosphere.2022.134217

  30. Zhang, Z, Huang Y, Zhu Z, Yu M, Gu L, Wang X, … Wang R (2022) Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion. Environ Pollut 120024. https://doi.org/10.1016/j.envpol.2022.120024

  31. Ma J, Khan MA, Xia M, Fu C, Zhu S, Chu Y, … Wang F (2019) Effective adsorption of heavy metal ions by sodium lignosulfonate reformed montmorillonite. Int J Biol Macromol 138:188–197. https://doi.org/10.1016/j.ijbiomac.2019.07.075

  32. Xiao H, Wang G, Liang G, Zhu J, Qiu J, Ding C, Komarneni S (2022) Stabilization of heavy metals from lead-zinc ore tailings with sodium diethyl dithiocarbamate functionalized montmorillonite (DDTC-Mt): leaching characteristics and remediating mechanism. Miner Eng 183. https://doi.org/10.1016/j.mineng.2022.107608

  33. Horue M, Cacicedo ML, Fernandez MA, Rodenak-Kladniew B, Torres Sánchez RM, Castro GR (2020) Antimicrobial activities of bacterial cellulose – silver montmorillonite nanocomposites for wound healing. Mater Sci Eng C:116. https://doi.org/10.1016/j.msec.2020.111152

  34. Oliveira LH, Trigueiro P, Souza JSN, Carvalho MS, Osajima JA, Silva-Filho EC, Fonseca MG (2022) Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids Surf B: Biointerfaces 209:0–112186. https://doi.org/10.1016/j.colsurfb.2021.112186

  35. Xu P, Hong F, Wang J, Cong Y, Dai S, Wang S, … Zhai Y (2017) Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders. EBioMedicine 16:251–261. https://doi.org/10.1016/j.ebiom.2017.01.019

  36. Elmore SE, Mitchell N, Mays T, Brown K, Marroquin-Cardona A, Romoser A, Phillips TD (2014) Common African cooking processes do not affect the aflatoxin binding efficacy of refined calcium montmorillonite clay. Food Control 37(1):27–32. https://doi.org/10.1016/j.foodcont.2013.08.037

    Article  CAS  Google Scholar 

  37. Bettiol PS, Cechinel MAP, Oliveira CM, Goulart K, Dol-Bó AG, Bernardin AM, Peterson M (2022) Adsorption of aflatoxin B1 mycotoxins by raw and lyophilized bentonitic clay. Adv Powder Technol 33(8). https://doi.org/10.1016/j.apt.2022.103682

  38. Zhang N, Han X, Zhao Y, Li Y, Meng J, Zhang H, Liang J (2022) Removal of aflatoxin B1 and zearalenone by clay mineral materials: In the animal industry and environment. Appl Clay Sci 228:0–106614. https://doi.org/10.1016/j.clay.2022.106614

  39. Solhi L, Atai M, Nodehi A, Imani M, Ghaemi A, Khosravi K (2012) Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: synthesis, characterization and properties of the adhesive. Dent Mater 28(4):369–377. https://doi.org/10.1016/j.dental.2011.11.010

    Article  CAS  Google Scholar 

  40. Matsuo K, Yoshihara K, Nagaoka N, Makita Y, Obika H, Okihara T, … van Meerbeek B (2019) Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomaterialia 100:388–397. https://doi.org/10.1016/j.actbio.2019.09.045

  41. Kamari Y, Ghiaci P, Ghiaci M (2017) Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mater Sci Eng, C 75:822–828. https://doi.org/10.1016/j.msec.2017.02.115

    Article  CAS  Google Scholar 

  42. Akbal O, Vural T, Malekghasemi S, Bozdoğan B, Denkbaş EB (2018) Saponin loaded montmorillonite-human serum albumin nanocomposites as drug delivery system in colorectal cancer therapy. Appl Clay Sci 166:214–222. https://doi.org/10.1016/j.clay.2018.09.021

    Article  CAS  Google Scholar 

  43. Bello ML, Aridio M, Vieira BA, Dias LRS, de Sousa VP, Castro HC, … Cabral LM (2015) Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material. PLoS One 10(3):1–20. https://doi.org/10.1371/journal.pone.0121110

  44. Kevadiya BD, Thumbar RP, Rajput MM, Rajkumar S, Brambhatt H, Joshi GV, … Bajaj HC (2012) Montmorillonite/poly-(-caprolactone) composites as versatile layered material: reservoirs for anticancer drug and controlled release property. Eur J Pharm Sci 47(1):265–272.https://doi.org/10.1016/j.ejps.2012.04.009

  45. Wang R, Peng Y, Zhou M, Shou D (2016) Smart montmorillonite-polypyrrole scaffolds for electro-responsive drug release. Appl Clay Sci 134:50–54. https://doi.org/10.1016/j.clay.2016.05.004

    Article  CAS  Google Scholar 

  46. Jain S, Datta M (2015) Oral extended release of dexamethasone: montmorillonite-PLGA nanocomposites as a delivery vehicle. Appl Clay Sci 104:182–188. https://doi.org/10.1016/j.clay.2014.11.028

    Article  CAS  Google Scholar 

  47. Rapacz-Kmita A, Bućko MM, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng, C 70:471–478. https://doi.org/10.1016/j.msec.2016.09.031

    Article  CAS  Google Scholar 

  48. Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F, … Viseras C (2014) Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B: Biointerfaces 113:152–157. https://doi.org/10.1016/j.colsurfb.2013.08.043

  49. Park JH, Shin HJ, Kim MH, Kim JS, Kang N, Lee JY, … Kim DD (2016) Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J Pharm Investig. Springer Netherlands. https://doi.org/10.1007/s40005-016-0258-8

  50. He H, Ma Y, Zhu J, Yuan P, Qing Y (2010) Applied clay science organoclays prepared from montmorillonites with different cation exchange capacity and surfactant con fi guration. Appl Clay Sci 48(1–2):67–72. https://doi.org/10.1016/j.clay.2009.11.024

    Article  CAS  Google Scholar 

  51. Peng J, Yi H, Song S, Zhan W, Zhao Y (2019) Results in physics driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations : a molecular dynamic study. Results Phys 12(September 2018):113–117. https://doi.org/10.1016/j.rinp.2018.11.011

    Article  Google Scholar 

  52. França DB, Oliveira LS, Filho FGN, Filho ECS, Osajima JA, Jaber M, Fonseca MG (2022) The versatility of montmorillonite in water remediation using adsorption: current studies and challenges in drug removal. J Environ Chem Eng 10(2). https://doi.org/10.1016/j.jece.2022.107341

  53. Saadat S, Rawtani D, Parikh G (2022) Clay minerals-based drug delivery systems for anti-tuberculosis drugs. J Drug Deliv Sci Technol 76:103755. https://doi.org/10.1016/j.jddst.2022.103755

    Article  CAS  Google Scholar 

  54. Yadav H, Agrawal R, Panday A, Patel J, Maiti S (2022) Polysaccharide-silicate composite hydrogels: review on synthesis and drug delivery credentials. J Drug Deliv Sci Technol 74:0–103573. https://doi.org/10.1016/j.jddst.2022.103573

  55. Fellnhofer K (2019) Toward a taxonomy of entrepreneurship education research literature: a bibliometric mapping and visualization. Educ Res Rev 27:28–55. https://doi.org/10.1016/j.edurev.2018.10.002

    Article  Google Scholar 

  56. Zhu S, Liu Y, Gu Z, Zhao Y (2022) Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – a bibliometric analysis. Adv Drug Deliv Rev 188:114420. https://doi.org/10.1016/j.addr.2022.114420

    Article  CAS  Google Scholar 

  57. Gusenbauer M, Haddaway NR (2020) Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods 11(2):181–217. https://doi.org/10.1002/jrsm.1378

    Article  Google Scholar 

  58. Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF (2022) Nano-drug delivery system for pancreatic cancer: a visualization and bibliometric analysis. Front Pharmacol 13. https://doi.org/10.3389/fphar.2022.1025618

  59. Navrot J, Banin A (1976) Comparison of modified montmorillonite to salts and chelates as carrier for micronutrients for plants: II Supply of iron. Agron J 68(2):358–361. https://doi.org/10.2134/AGRONJ1976.00021962006800020039X

    Article  CAS  Google Scholar 

  60. Mcginity JW, Harris MR (1980) Optimization of slow-release tablet formulations: containing montmorillonite I. Properties of tablets. Drug Dev Ind Pharm 6(4):399–410. https://doi.org/10.3109/03639048009068711

    Article  CAS  Google Scholar 

  61. Harris MR, Mcginity JW (1982) Optimization of slow-release tablet formulations containing montmorillonite II. Factors affecting drug release. Drug Dev Ind Pharm 8(6):783–793. https://doi.org/10.3109/03639048209022124

    Article  CAS  Google Scholar 

  62. Harris MR, Mcginity JW (1982) Optimization of slow-release tablet formulations containing montmorillonite III. Mechanism of release. Drug Dev Ind Pharm 8(6):795–809. https://doi.org/10.3109/03639048209022125

    Article  CAS  Google Scholar 

  63. Harris MR, Schwartz JB, Mcginity JW (1985) Optimization of a slow-release tablet formulation containing sodium sulfathiazole and a montmorillonite clay. Drug Dev Ind Pharm 11(5):1089–11. https://doi.org/10.3109/03639048509055599

    Article  CAS  Google Scholar 

  64. Choudary BM, Prabhu Prasad B, Lakshmi Kantam M (1989) New Interlamellar pesticide-Metal-montmorillonite complexes: a novel technique for controlled release. J Agric Food Chem 37:53. https://doi.org/10.1021/jf00089a047

    Article  Google Scholar 

  65. Saehr D, Walter D, Wey R (1991) Fixation de toluène dans une montmorillonite-Cu(II). Clay Miner 26(1):43–48. https://doi.org/10.1180/CLAYMIN.1991.026.1.05

    Article  CAS  Google Scholar 

  66. Al-Sabrl IYN, David Smith J, Thomas Donald J (1993) Molluscicides for control of Schistosomiasis. 3. Adsorption by clay suspensions. Environ Sci Technol 27(2):299–303.0013–936X/93/0927–0299$04.00/0

  67. Metwally AI, Mashhady AS, Falatah AM, Reda M (1993) Effect of pH on zinc adsorption and solubility in suspensions of different clays and soils. Zeitschrift für Pflanzenernährung und Bodenkunde 156(2):131–135. https://doi.org/10.1002/JPLN.19931560206

    Article  CAS  Google Scholar 

  68. Lin FH, Lee YH, Jian CH, Wong J-M, Shieh M-J, Wang C-Y (2002) A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 23:1981–1987. https://doi.org/10.1016/S0142-9612(01)00325-8

    Article  CAS  Google Scholar 

  69. Lee W-F, Fu Y-T (2003) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660

    Article  CAS  Google Scholar 

  70. Kawase M, Hayashi Y, Kinoshita F, Yamato E, Miyazaki J, Yamakawa J, … Yagi K (2004) Protective effect of montmorillonite on plasmid DNA in oral gene delivery into small intestine. Biol Pharm Bull 27(12):2049–2051

  71. Dong Y, Feng SS (2005) Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(30):6068–6076. https://doi.org/10.1016/j.biomaterials.2005.03.021

    Article  CAS  Google Scholar 

  72. Chung AJ, Rubner MF (2002) Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films. Langmuir 18(4):1176–1183. https://doi.org/10.1021/LA010873M

    Article  CAS  Google Scholar 

  73. Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV (2009) Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm 374(1–2):53–57. https://doi.org/10.1016/j.ijpharm.2009.03.004

    Article  CAS  Google Scholar 

  74. Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29(2):133–145

    Article  CAS  Google Scholar 

  75. Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry. Part I. Excipients and medical applications. Appl Clay Sci 46(1):73–80. https://doi.org/10.1016/j.clay.2009.07.017

    Article  CAS  Google Scholar 

  76. Yuan Q, Shah J, Hein S, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6(3):1140–1148. https://doi.org/10.1016/j.actbio.2009.08.027

    Article  CAS  Google Scholar 

  77. Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohyd Polym 69(1):41–49. https://doi.org/10.1016/j.carbpol.2006.08.025

    Article  CAS  Google Scholar 

  78. Park JK, Choy YB, Oh JM, Kim JY, Hwang SJ, Choy JH (2008) Controlled release of donepezil intercalated in smectite clays. Int J Pharm 359(1–2):198–204. https://doi.org/10.1016/j.ijpharm.2008.04.012

    Article  CAS  Google Scholar 

  79. Depan D, Kumar AP, Singh RP (2009) Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater 5(1):93–100. https://doi.org/10.1016/j.actbio.2008.08.007

    Article  CAS  Google Scholar 

  80. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36(1):22–36. https://doi.org/10.1016/j.clay.2006.06.015

    Article  CAS  Google Scholar 

  81. Zheng JP, Luan L, Wang HY, Xi LF, Yao KD (2007) Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36(4):297–301. https://doi.org/10.1016/j.clay.2007.01.012

    Article  CAS  Google Scholar 

  82. Wang X, Du Y, Luo J (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19(6). https://doi.org/10.1088/0957-4484/19/6/065707

  83. Joshi GV, Patel HA, Kevadiya BD, Bajaj HC (2009) Montmorillonite intercalated with vitamin B1 as drug carrier. Appl Clay Sci 45(4):248–253. https://doi.org/10.1016/j.clay.2009.06.001

    Article  CAS  Google Scholar 

  84. Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48(3):291–295. https://doi.org/10.1016/j.clay.2010.01.007

    Article  CAS  Google Scholar 

  85. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  86. Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, … Wang J (2022) Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B 12(11):4098–4121. https://doi.org/10.1016/j.apsb.2022.08.013

  87. Moreno AE, Melchor L, Orts-Gil G, Gracia C, Lacunza I, Izquierdo B, Fernández-Vera JI (2017) Spanish science diplomacy: a global and collaborative bottom-up approach. Science & Diplomacy, 6, 1–12. Retrieved from http://www.sciencediplomacy.org/article/2017/spanish-science-diplomacy-global-and-collaborative-bottom-approach

  88. Zhou CH, Zhao LZ, Wang AQ, Chen TH, He HP (2016) Current fundamental and applied research into clay minerals in China. Appl Clay Sci 119:3–7. https://doi.org/10.1016/j.clay.2015.07.043

    Article  CAS  Google Scholar 

  89. Manoharan C, Sutharsan P, Dhanapandian S, Venkatachalapathy R (2012) Characteristics of some clay materials from Tamilnadu, India, and their possible ceramic uses. Cerâmica 58:412–418

    Article  CAS  Google Scholar 

  90. Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H (2022) Mapping knowledge landscapes and emerging trends of the links between bone metabolism and diabetes mellitus: a bibliometric analysis from 2000 to 2021. Front Public Health 10. https://doi.org/10.3389/fpubh.2022.918483

  91. Marx Z, Dagan I, Buhmann JM, Shamir E, Shamir Shamir E, Brodley CE, Danyluk A (2002) Coupled clustering: a method for detecting structural correspondence Zvika Marx Ido Dagan. J Mach Learn Res 3:747–780

    Google Scholar 

  92. Cabrera A, Celis R, Hermosín MC (2016) Imazamox-clay complexes with chitosan-and iron(III)-modified smectites and their use in nanoformulations. Pest Manag Sci 72:1285–1294. https://doi.org/10.1002/ps.4106

    Article  Google Scholar 

  93. Phuekphong AF, Imwiset KJ, Ogawa M (2020) Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. J Hazard Mater 399:122888. https://doi.org/10.1016/J.JHAZMAT.2020.122888

    Article  Google Scholar 

  94. Zhang H, Shi Y, Xu X, Zhang M, Ma L (2020) Structure regulation of bentonite-alginate nanocomposites for controlled release of imidacloprid. ACS Omega. https://doi.org/10.1021/acsomega.0c00610

    Article  Google Scholar 

  95. Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastaldi E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 205–206:32–39. https://doi.org/10.1016/j.jhazmat.2011.11.093

    Article  CAS  Google Scholar 

  96. Jiang L, Mo J, Kong Z, Qin Y, Dai L, Wang Y, Ma L (2015) Effects of organobentonites on imidacloprid release from alginate-based formulation. Appl Clay Sci 105–106:52–59. https://doi.org/10.1016/J.CLAY.2014.12.023

    Article  Google Scholar 

  97. Wu C, Lou X, Xu X, Huang A, Zhang M, Ma L (2020) Thermodynamics and kinetics of pretilachlor adsorption on organobentonites for controlled release. ACS Omega 5(8):4191–4199. https://doi.org/10.1021/acsomega.9b04025

    Article  CAS  Google Scholar 

  98. Wu C, Lou X, Huang A, Zhang M, Ma L (2020) Thermodynamics and kinetics of pretilachlor adsorption: implication to controlled release from organobentonites. Appl Clay Sci 190. https://doi.org/10.1016/j.clay.2020.105566

  99. Mo J, Dai L, Chen L, Wang Y, Huang A, Wang L, Ma L (2015) Structural effects of organobentonites on controlled release of pretilachlor. Appl Clay Sci 115:150–156. https://doi.org/10.1016/j.clay.2015.07.036

    Article  CAS  Google Scholar 

  100. Chevillard A, Angellier-Coussy H, Peyron S, Gontard N, Gastaldi E (2012) Investigating ethofumesate-clay interactions for pesticide controlled release. Soil Sci Soc Am J 76(2):420–431. https://doi.org/10.2136/sssaj2011.0104

    Article  CAS  Google Scholar 

  101. Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastaldi E (2012) Investigating the biodegradation pattern of an ecofriendly pesticide delivery system based on wheat gluten and organically modified montmorillonites. Polym Degrad Stab 97(10):2060–2068. https://doi.org/10.1016/j.polymdegradstab.2012.02.017

    Article  CAS  Google Scholar 

  102. el Assimi T, Lakbita O, el Meziane A, Khouloud M, Dahchour A, Beniazza R, … Lahcini M (2020) Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. Int J Biol Macromol 161:492–502. https://doi.org/10.1016/j.ijbiomac.2020.06.074

  103. He F, Zhou Q, Wang L, Yu G, Li J, Feng Y (2019) Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Appl Clay Sci 183. https://doi.org/10.1016/j.clay.2019.105347

  104. Rashidzadeh A, Olad A, Hejazi MJ (2017) Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Adv Polym Technol 36(2):177–185. https://doi.org/10.1002/adv.21597

    Article  CAS  Google Scholar 

  105. Shattar SFA, Zakaria NA, Foo KY (2015) Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. New pub: Balaban 57(29):13645–13677. https://doi.org/10.1080/19443994.2015.1065439

    Article  CAS  Google Scholar 

  106. Rashidzadeh A, Olad A, Salari D, Jalil Hejazi M (2014) On the encapsulation of natural pesticide using polyvinyl alcohol/alginate–montmorillonite nanocomposite for controlled release application. Polym Eng Sci 54(12):2707–2714. https://doi.org/10.1002/PEN.23823

    Article  CAS  Google Scholar 

  107. Kaygusuz H, Erim FB (2013) Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. React Funct Polym 73(11):1420–1425. https://doi.org/10.1016/j.reactfunctpolym.2013.07.014

    Article  CAS  Google Scholar 

  108. Luo C, Yang Q, Lin X, Qi C, Li G (2019) Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. Int J Biol Macromol 125:721–729. https://doi.org/10.1016/j.ijbiomac.2018.12.072

    Article  CAS  Google Scholar 

  109. Zeynabad FB, Salehi R, Mahkam M (2017) Design of pH-responsive antimicrobial nanocomposite as dual drug delivery system for tumor therapy. Appl Clay Sci 141:23–35. https://doi.org/10.1016/j.clay.2017.02.015

    Article  CAS  Google Scholar 

  110. Liu X, Lu X, Su Y, Kun E, Zhang F (2020) Clay-polymer nanocomposites prepared by reactive melt extrusion for sustained drug release. Pharmaceutics 12(1). https://doi.org/10.3390/pharmaceutics12010051

  111. Bazmi Zeynabad F, Salehi R, Alizadeh E, Kafil HS, Hassanzadeh AM, Mahkam M (2015) PH-controlled multiple-drug delivery by a novel antibacterial nanocomposite for combination therapy. RSC Adv 5(128):105678–105691. https://doi.org/10.1039/c5ra22784d

    Article  CAS  Google Scholar 

  112. Dziadkowiec J, Mansa R, Quintela A, Rocha F, Detellier C (2017) Preparation, characterization and application in controlled release of Ibuprofen-loaded Guar gum/montmorillonite bionanocomposites. Appl Clay Sci 135:52–63. https://doi.org/10.1016/j.clay.2016.09.003

    Article  CAS  Google Scholar 

  113. Bakre LG, Sarvaiya JI, Agrawal YK (2016) Synthesis, characterization, and study of drug release properties of curcumin from polycaprolactone /organomodified montmorillonite nanocomposite. J Pharm Innov 11(4):300–307. https://doi.org/10.1007/s12247-016-9253-x

    Article  Google Scholar 

  114. Rebitski EP, Souza GP, Santana SAA, Pergher SBC, Alcântara ACS (2019) Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl Clay Sci 173:35–45. https://doi.org/10.1016/j.clay.2019.02.024

    Article  CAS  Google Scholar 

  115. Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, … Caramella C (2012) In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci 55:131–137. https://doi.org/10.1016/j.clay.2011.11.006

  116. Rebitski EP, Alcântara ACS, Darder M, Cansian RL, Gómez-Hortigüela L, Pergher SBC (2018) Functional carboxymethylcellulose/Zein bionanocomposite films based on neomycin supported on sepiolite or montmorillonite clays. ACS Omega 3(10):13538–13550. https://doi.org/10.1021/acsomega.8b01026

    Article  CAS  Google Scholar 

  117. Bekaroğlu MG, Nurili F, İşçi S (2018) Montmorillonite as imaging and drug delivery agent for cancer therapy. Appl Clay Sci 162:469–477. https://doi.org/10.1016/j.clay.2018.06.039

    Article  CAS  Google Scholar 

  118. Calabrese I, Gelardi G, Merli M, Liveri MLT, Sciascia L (2017) Clay-biosurfactant materials as functional drug delivery systems: slowing down effect in the in vitro release of cinnamic acid. Appl Clay Sci 135:567–574. https://doi.org/10.1016/j.clay.2016.10.039

    Article  CAS  Google Scholar 

  119. Oh Y-J, Choi G, Choy YB, Park JW, Park JH, Lee HJ, … Choy JH (2013) Aripiprazole-montmorillonite: a new organic-inorganic nanohybrid material for biomedical applications. Chem-Eur J 19(15):4869–4875.https://doi.org/10.1002/chem.201203384

  120. Kaur M, Datta M (2014) Diclofenac sodium adsorption onto montmorillonite: adsorption equilibrium studies and drug release kinetics. Adsorpt Sci Technol 32(5):365–387. https://doi.org/10.1260/0263-6174.32.5.365

    Article  CAS  Google Scholar 

  121. Kevadiya BD, Joshi GV, Mody HM, Bajaj HC (2011) Biopolymer-clay hydrogel composites as drug carrier: host-guest intercalation and in vitro release study of lidocaine hydrochloride. Appl Clay Sci 52(4):364–367. https://doi.org/10.1016/j.clay.2011.03.017

    Article  CAS  Google Scholar 

  122. Farshi Azhar F, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate-chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288–296. https://doi.org/10.1016/j.clay.2014.09.004

    Article  CAS  Google Scholar 

  123. Sarmah M, Banik N, Hussain A, Ramteke A, Sharma HK, Maji TK (2015) Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications. J Mater Sci 50(22):7303–7313. https://doi.org/10.1007/s10853-015-9287-3

    Article  CAS  Google Scholar 

  124. Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC (2010) Montmorillonite-alginate nanocomposites as a drug delivery system: intercalation and in vitro release of vitamin B1 and vitamin B 6. J Biomater Appl 25(2):161–177. https://doi.org/10.1177/0885328209344003

    Article  CAS  Google Scholar 

  125. Saha K, Butola BS, Joshi M (2014) Synthesis and characterization of chlorhexidine acetate drug-montmorillonite intercalates for antibacterial applications. Appl Clay Sci 101:477–483. https://doi.org/10.1016/j.clay.2014.09.010

    Article  CAS  Google Scholar 

  126. Reddy SG (2022) Alginates-a seaweed product: its properties and applications. In I. Deniz & E. Imamoglu (Eds.), Properties and applications of alginates (1st ed., Vol. 1, pp. 0–174). https://doi.org/10.5772/intechopen.94635

  127. Paiva LB, Morales AR, Valenzuela Díaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24. https://doi.org/10.1016/j.clay.2008.02.006

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Research Support Foundation of the State of Paraiba (FAPESQ) through Public Notice No. 006/2020 PDCTR-PB (MCTIC/CNPq/FAPESQ-PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayanne Tomaz Casimiro da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, I.E.S., de Oliveira, J.H.P., de Lima Damasceno, B.P.G. et al. Trends in the use of montmorillonite as a delivery system for active substances. J Nanopart Res 25, 144 (2023). https://doi.org/10.1007/s11051-023-05796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05796-1

Keywords

Navigation