Skip to main content
Log in

Toluene combustion on MnOx, CeO2, and Mn-Ce-O solids prepared via citrate complexation, and citrate and urea combustion methods

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

MnOx, CeO2, and MnCe-O (Mn/Ce = 1) solids have been prepared via the citrate complexation and combustion method using citrate and urea precursors. The solids have been characterized by XRD, SEM-EDX, N2-adsorption-desorption, UV-Vis spectroscopy, TPR, O2-TPD, and XPS techniques. The catalytic reactivity of the manganese oxides was not affected by the preparation protocol. In the case of ceria and mixed oxides, the synthesis method greatly affected the structural and chemical properties, ultimately altering their reactivity. The citrate complexation method produced the most homogeneous and active mixed oxide, whereas the urea combustion method resulted in less active solids. The mixed oxide prepared via urea combustion was less active than the manganese single oxide; the decrease in activity was attributed to phase separation and the formation of Mn3O4 domains on the surface of ceria. In contrast, citrate complexation resulted in solids with the lowest particle size (~ 3 nm), the highest oxidation state for manganese, and the highest proportion of oxygen vacancies, which promote the oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Spivey JJ (1987) Complete catalytic oxidation of volatile organics. Ind Eng Chem Res 26:2165–2180. https://doi.org/10.1021/ie00071a001

    Article  CAS  Google Scholar 

  2. Miao L, Wang J, Zhang P (2019) Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl Surf Sci 466:441–453. https://doi.org/10.1016/j.apsusc.2018.10.031

    Article  CAS  Google Scholar 

  3. Liu D, Li Q, Hou J, Zhao H (2021) Mixed-valent manganese oxide for catalytic oxidation of Orange II by activation of persulfate: heterojunction dependence and mechanism. Catal Sci Technol 11:3715–3723. https://doi.org/10.1039/d1cy00087j

    Article  CAS  Google Scholar 

  4. Li Y, Xiao L, Liu F, Dou Y, Liu S, Fan Y, Cheng G, Song W, Zhou J (2019) Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst. J Nanoparticle Res 21(183):28–36. https://doi.org/10.1007/s11051-019-4467-8

    Article  CAS  Google Scholar 

  5. Yao HC, Yao YFY (1984) Ceria in automotive exhaust catalysts. I. Oxygen storage. J Catal 86:254–265. https://doi.org/10.1016/0021-9517(84)90371-3

    Article  CAS  Google Scholar 

  6. Duprez D, Descorme C, Birchem T, Rohart E (2001) Oxygen storage and mobility on model three-way catalysts. Top Catal 16(17):49–56. https://doi.org/10.1023/A:1016622612521

    Article  Google Scholar 

  7. Palmqvist AEC, Johansson EM, Järås SG, Muhammed M (1998) Total oxidation of methane over doped nanophase cerium oxides. Catal Letters 56:69–75. https://doi.org/10.1023/A:1019032306894

    Article  CAS  Google Scholar 

  8. Liao Y, Fu M, Chen L, Wu J, Huang B, Ye D (2013) Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides. Catal Today 216:220–228. https://doi.org/10.1016/j.cattod.2013.06.017

    Article  CAS  Google Scholar 

  9. Sato T, Komanoya T (2009) Selective oxidation of alcohols with molecular oxygen catalyzed by Ru/MnOx/CeO2 under mild conditions. Catal Commun 10:1095–1098. https://doi.org/10.1016/j.catcom.2009.01.004

    Article  CAS  Google Scholar 

  10. Hong WJ, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M (2011) Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition. J Catal 277:208–216. https://doi.org/10.1016/j.jcat.2010.11.007

    Article  CAS  Google Scholar 

  11. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem Eng Journal 118:119–125. https://doi.org/10.1016/j.cej.2006.02.002

    Article  CAS  Google Scholar 

  12. Shi L, Chu W, Qu F, Luo S (2007) Low-temperature catalytic combustion of methane over MnOx-CeO2 mixed oxide catalysts: effect of preparation method. Catal Letters 113:59–64. https://doi.org/10.1007/s10562-006-9012-6

    Article  CAS  Google Scholar 

  13. Sudarsanam P, Hillary B, Deepa DK, Amin MH, Mallesham B, Benjaram MR, Suresh KB (2015) Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: the cooperative effect of cerium- and cobalt-oxides. Catal Sci Technol 5:3496–3500. https://doi.org/10.1039/c5cy00525f

    Article  CAS  Google Scholar 

  14. Nagasawa T, Matsumoto K, Minegishi N, Kosaka H (2021) Structural Characterization of ceria-supported Pt nanoparticles by flame-assisted spray pyrolysis using a burner diffusion flame. Energy and Fuels 35:12380–12391. https://doi.org/10.1021/acs.energyfuels.1c01296

    Article  CAS  Google Scholar 

  15. Issa G, Dimitrov M, Ivanova R, Kormunda M, Kovacheva D, Tsoncheva T (2022) Mixed oxides of cerium and manganese as catalysts for total oxidation of ethyl acetate: effect of preparation procedure. React Kinet Mech Catal 135:105–121. https://doi.org/10.1007/s11144-021-02135-0

    Article  CAS  Google Scholar 

  16. Chen J, Chen X, Yan D, Jiang M, XuW YH, Jia H (2019) A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants. Appl Catal B Environ 250:396–407. https://doi.org/10.1016/j.apcatb.2019.03.042

    Article  CAS  Google Scholar 

  17. Yan B, Zhu ÆH (2008) Controlled synthesis of CeO2 nanoparticles using novel amphiphilic cerium complex precursors. J Nanoparticle Res 10:1279–1285. https://doi.org/10.1007/s11051-008-9371-6

    Article  CAS  Google Scholar 

  18. Yang S, Zhou F, Liu Y, Zhang L, Chen Y, Wang H, Tian Y, Zhang C, Liu D (2019) Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming. Int J Hydrogen Energy 44:7252–7261. https://doi.org/10.1016/j.ijhydene.2019.01.254

    Article  CAS  Google Scholar 

  19. Farooq U, Phul R, Alshehri SM, Ahmed J, Ahmad T (2019) Electrocatalytic and enhanced photocatalytic applications of sodium niobate nanoparticles developed by citrate precursor route. Sci Rep 9:1–17. https://doi.org/10.1038/s41598-019-40745-w

    Article  CAS  Google Scholar 

  20. Huang Y, Cheng X, Li Y, Shi D, Li G, Xu K (2018) Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3. Sol Energy Mater Sol Cells 188:190–201. https://doi.org/10.1016/j.solmat.2018.09.006

    Article  CAS  Google Scholar 

  21. Ravishankar TN, Ramakrishnappa T, Nagaraju G, Rajanaika H (2015) Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. Chemistry Open 4:146–154. https://doi.org/10.1002/open.201402046

    Article  CAS  Google Scholar 

  22. Ghahramani Z, Arabi AM, Shafiee Afarani M, Mahdavian M (2020) Solution combustion synthesis of cerium oxide nanoparticles as corrosion inhibitor. Int J Appl Ceram Technol 17:1514–1521. https://doi.org/10.1111/ijac.13365

    Article  CAS  Google Scholar 

  23. Lei Z, Hao S, Yang J, Zhang L, Fang B, Wei K, Lingbo Q, Jin S, Wei C (2021) Study on denitration and sulfur removal performance of Mn-Ce supported fly ash catalyst. Chemosphere 270:128646. https://doi.org/10.1016/j.chemosphere.2020.128646

    Article  CAS  Google Scholar 

  24. Xiao X, Wang J, Jia X, Ma C, Qiao W, Ling L (2021) Low-temperature selective catalytic reduction of NOx with NH3 over Mn-Ce composites synthesized by polymer-assisted deposition. ACS Omega 6:12801–12812. https://doi.org/10.1021/acsomega.1c01123

    Article  CAS  Google Scholar 

  25. Zhu X, Liu S, Cai Y, Gao X, Zhou J, Zheng C, Tu X (2016) Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Appl Catal B Environ 183:124–132. https://doi.org/10.1016/j.apcatb.2015.10.013

    Article  CAS  Google Scholar 

  26. He F, Chen Y, Zhao P, Liu S (2016) Effect of calcination temperature on the structure and performance of CeOxMnOx/TiO2 nanoparticles for the catalytic combustion of chlorobenzene. J Nanoparticle Res 18(19):2269–2276. https://doi.org/10.1007/s11051-016-3428-8

    Article  CAS  Google Scholar 

  27. Delimaris D, Ioannides T (2008) VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Appl Catal B Environ 84:303–312. https://doi.org/10.1016/j.apcatb.2008.04.006

    Article  CAS  Google Scholar 

  28. Marinsek M, Zupan K, Jadran M (2002) Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J Power Sources 106:178–188. https://doi.org/10.1016/S0378-7753(01)01056-4

    Article  CAS  Google Scholar 

  29. Hattori T, Nishiyama S, Kishi Y, Iwadate Y (1993) Characterization of perovskite-type GdFeO3 powders prepared by amorphous citrate process. J Mater Sci Lett 12:883–885. https://doi.org/10.1007/BF00455606

    Article  CAS  Google Scholar 

  30. Juárez RE, Lamas DG, Lascalea GE, Walsöe de Reca NE (2000) Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. J of the Euro Cera Soc 20:133–138. https://doi.org/10.1016/S0955-2219

    Article  Google Scholar 

  31. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  32. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts. Appl Catal B Environ 103:143–148. https://doi.org/10.1016/j.apcatb.2011.01.020

    Article  CAS  Google Scholar 

  33. Cui M, Li Y, Wang X, Wang J, Shen M (2013) Effect of preparation method on MnOx-CeO2 catalysts for NO oxidation. J Rare Earths 31:572–576. https://doi.org/10.1016/S1002-0721(12)60322-6

    Article  CAS  Google Scholar 

  34. Li H, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2011) Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl Catal B Environ 102:475–483. https://doi.org/10.1016/.apcatb.2010.12.029

    Article  CAS  Google Scholar 

  35. Rao T, Shen M, Jia L, Hao J, Wang J (2007) Oxidation of ethanol over Mn-Ce-O and Mn-Ce-Zr-O complex compounds synthesized by sol-gel method. Catal Commun 8:1743–1747. https://doi.org/10.1016/j.catcom.2007.01.036

    Article  CAS  Google Scholar 

  36. Tok AIY, Du SW, Boey FYC, Chong WK (2007) Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Mater Sci Eng A 466:223–229. https://doi.org/10.1016/j.msea.2007.02.083

    Article  CAS  Google Scholar 

  37. Zhao Q, Shih WH (2002) Effects of processing parameters on the surface area of Mn2O3 at elevated temperatures. Microporous Mesoporous Mater 53:81–86. https://doi.org/10.1016/S1387-1811(02)00326-8

    Article  CAS  Google Scholar 

  38. Gnanam S, Rajendran V (2013) Facile hydrothermal synthesis of alpha manganese sesquioxide (α-Mn2O3) nanodumb-bells: structural, magnetic, optical and photocatalytic properties. J Alloys Compd 550:463–470. https://doi.org/10.1016/j.jallcom.2012.10.172

    Article  CAS  Google Scholar 

  39. Zhang X, Li H, Hou F, Yang Y, Dong H, Liu N, Wang Y, Cui L (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33. https://doi.org/10.1016/j.apsusc.2017.03.179

    Article  CAS  Google Scholar 

  40. Dai Y, Wang X, Dai Q, Li D (2012) Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl Catal B Environ 111–112:141–149. https://doi.org/10.1016/j.apcatb.2011.09.028

    Article  CAS  Google Scholar 

  41. Parashar M, Shukla VK, Singh R (2020) Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci Mater Electron 31:3729–3749. https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  42. Singh AK, Dhiman TK, Lakshmi VSGB, Solanki PR (2021) Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry 137:107684. https://doi.org/10.1016/j.bioelechem.2020.107684

    Article  CAS  Google Scholar 

  43. Jampaiah D, Tur KM, Ippolito SJ, Sabri YM, Tardio J, Bhargava SK, Reddy BM (2013) Structural characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation. RSC Adv 3:12963–12974. https://doi.org/10.1039/c3ra41441h

    Article  CAS  Google Scholar 

  44. Ranga RG, Ranjan SH (2001) XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. Proc Indian Acad Sci Chem Sci 113:651–658. https://doi.org/10.1007/BF02708797

    Article  Google Scholar 

  45. Gonzalez CM, Reina TR, Ivanova S, Centeno MA, Odriozola JA (2014) Pt vs. Au in water-gas shift reaction. J Catal 314:1–9. https://doi.org/10.1016/j.jcat.2014.03.014

    Article  CAS  Google Scholar 

  46. Seo J, Gowda A, Babu SV (2018) Almost complete removal of ceria particles down to 10nm size from silicon dioxide surfaces. ECS J Solid State Sci Technol 7:P243–P252. https://doi.org/10.1149/2.0131805jss

    Article  CAS  Google Scholar 

  47. Lian J, Liu P, Jin C, Shi Z, Luo X, Liu Q (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim Acta 90:6247–6252. https://doi.org/10.1021/acs.analchem.8b00885

    Article  CAS  Google Scholar 

  48. Ma L, Wang X, Wang J, Zhang J, Yin C, Fan L, Zhang D (2021) Graphene oxide-cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings. J Mater Sci 56:10108–10123. https://doi.org/10.1007/s10853-021-05932-z

    Article  CAS  Google Scholar 

  49. Wang J, Wan C, Cheng DG, Chen F, Zhan X (2021) Unveiling the morphology dependence of ceria nanocrystals for boosting low-temperature cyclohexane oxidative dehydrogenation. Appl Surf Sci 565:150–609. https://doi.org/10.1016/j.apsusc.2021.150609

    Article  CAS  Google Scholar 

  50. Grissa R, Martinez H, Cotte S, Galipaud J, Pecquenard B, Le Cras F (2017) Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau. Appl Surf Sci 411:449–456. https://doi.org/10.1016/j.apsusc.2017.03.205

    Article  CAS  Google Scholar 

  51. Bigiani L, Maccato C (2020) MnO2 nanomaterials functionalized with Ag and SnO2: an XPS study MnO2 nanomaterials functionalized with Ag and SnO2 : An XPS study. Surface Science Spectra 27:024005. https://doi.org/10.1116/6.0000332

    Article  CAS  Google Scholar 

  52. Wenxiang T, Xiaofeng WU, Gang LIU, Shuangde LI (2015) Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs. J Rare Earths 33:62–69. https://doi.org/10.1016/S1002-0721(14)60384-7

    Article  CAS  Google Scholar 

  53. Wu Z, Jiang B, Liu Y (2008) Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B: Environ 79:347–355. https://doi.org/10.1016/j.apcatb.2007.09.039

    Article  CAS  Google Scholar 

  54. Xingyi W, Qian K, Dao L (2009) Catalytic combustion of chlorobenzene over MnOx -CeO2 mixed oxide catalysts. Appl Catal B Environ 86:166–175. https://doi.org/10.1016/j.apcatb.2008.08.009

    Article  CAS  Google Scholar 

  55. Zhang P, Lu H, Zhou Y, Zhang L, Wu Z, Yang S, Shi H, Zhu Q, Chen Y, Dai S (2015) Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun 6:8446. https://doi.org/10.1038/ncomms9446

    Article  CAS  Google Scholar 

  56. Wang X, Kang Q, Li D (2008) Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catal Commun 9:2158–2162. https://doi.org/10.1016/j.catcom.2008.04.021

    Article  CAS  Google Scholar 

  57. Wang Z, Shen G, Li J, Liu H, Wang Q, Chen Y (2013) Catalytic removal of benzene over CeO2-MnOx composite oxides prepared by hydrothermal method. Appl Catal B Environ 139:253–259. https://doi.org/10.1016/j.apcatb.2013.02.030

    Article  CAS  Google Scholar 

  58. Andreoli S, Deorsola FA, Pirone R (2015) MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR. Catal. Today 253:199–206. https://doi.org/10.1016/j.apcatb.2013.02.030

    Article  CAS  Google Scholar 

  59. Kapteljn F, Smgoredjo L, Andreml A (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 3:173–189. https://doi.org/10.1016/0926-3373(93)E0034-9

    Article  Google Scholar 

  60. Chen H, Sayari A, Adnot A, Larachi F (2001) Composition-activity effects of Mn-Ce -O composites on phenol catalytic wet oxidation. Appl Catal B Environ 32:195–204. https://doi.org/10.1016/S0926-3373(01)00136-9

    Article  Google Scholar 

  61. Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Belver C, Hungria AB, Conesa JC, Soria J (2000) Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports. J Catal 194:385–392. https://doi.org/10.1006/jcat.2000.2931

    Article  CAS  Google Scholar 

  62. Binet C, Daturi M, Lavalley J (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Tod 50:207–225. https://doi.org/10.1016/S0920-5861(98)00504-5

    Article  CAS  Google Scholar 

  63. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Book  Google Scholar 

  64. Chen Y, Zheng H, Guo Z, Zhou C, Wang C, Borgna A, Yang Y (2011) Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity. J Catal 283:34–44. https://doi.org/10.1016/j.jcat.2011.06.021

    Article  CAS  Google Scholar 

  65. Machida M, Uto M, Kurogi D, Kijima T (2000) MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive Removal of NOx. Chem Mater 12:3158–3164. https://doi.org/10.1021/cm000207

    Article  CAS  Google Scholar 

  66. Zhang C, Wang C, Zhan W, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A (2013) Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Appl Catal B Environ 129:509–516. https://doi.org/10.1016/j.apcatb.2012.09.056

    Article  CAS  Google Scholar 

  67. Zhang Y, Qin Z, Wang G, Zhu H, Dong M, Li S, Wu Z, Wu Z, Zhang J, Hu T, Fan W, Wang J (2013) Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Appl Catal B Environ 129:172–181. https://doi.org/10.1016/j.apcatb.2012.09.021

    Article  CAS  Google Scholar 

  68. Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67. https://doi.org/10.1016/j.cej.2014.01.041

    Article  CAS  Google Scholar 

  69. Döbber D, Kießling D, Schmitz W, Wendt G (2004) MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane. Appl Catal B Environ 52:135–143. https://doi.org/10.1016/j.apcatb.2004.02.012

    Article  CAS  Google Scholar 

  70. Kim HJ, Choi S, Inyang HI (2008) Catalytic oxidation of toluene in contaminant emission control systems using Mn-Ce/γ-Al2O3. Environ Technol 29:559–569. https://doi.org/10.1080/09593330801984597

    Article  CAS  Google Scholar 

  71. Zhang C, Chu W, Chen F, Li L, Jiang R, Yan J (2020) Effects of cerium precursors on surface properties of mesoporous CeMnOx catalysts for toluene combustion. J Rare Earths 38:70–75. https://doi.org/10.1016/j.jre.2019.04.013

    Article  CAS  Google Scholar 

  72. Du J, Qu Z, Dong C, Song L, Qin Y, Huang N (2018) low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl Surf Sci 433:1025–1035. https://doi.org/10.1016/j.apsusc.2017.10.116

    Article  CAS  Google Scholar 

  73. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041. https://doi.org/10.1021/es204038j

    Article  CAS  Google Scholar 

  74. Lamaita L, Peluso MA, Sambeth JE, Thomas HJ (2005) Synthesis and characterization of manganese oxides employed in VOCs abatement. Appl Catal B Environ 61:114–119. https://doi.org/10.1016/j.apcatb.2005.03.014

    Article  CAS  Google Scholar 

  75. Zhou G, Lan H, Wang H, Xie H, Zhang G, Zheng X (2014) Catalytic combustion of PVOCs on MnO x catalysts. J Mol Catal A Chem 393:279–288. https://doi.org/10.1016/j.molcata.2014.06.028

    Article  CAS  Google Scholar 

  76. López JM, Gilbank AL, García T, Solsona B, Agouram S, Torrente-murciano L (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B Environ 174–175:403–412. https://doi.org/10.1016/j.apcatb.2015.03.017

    Article  CAS  Google Scholar 

  77. Zhang X, Li H, Song Z, Liu W, Liu Z, Mo D, Gao H, Zhang M (2022) In situ DRIFT spectroscopy study into the reaction mechanism of toluene over CeMo catalysts. J Environ Chem Eng 10:108895. https://doi.org/10.1016/j.jece.2022.108895

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Algerian Ministry of Higher Education and Scientific Research “MESRS” and USTHB Chemistry Faculty (PhD scholarship and Travel Grant for S. Rahou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Benadda-Kordjani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Figures S1-S2 (DOCX 354 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahou, S., Benadda-Kordjani, A., Ivanova, S. et al. Toluene combustion on MnOx, CeO2, and Mn-Ce-O solids prepared via citrate complexation, and citrate and urea combustion methods. J Nanopart Res 25, 114 (2023). https://doi.org/10.1007/s11051-023-05759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05759-6

Keywords

Navigation