Skip to main content
Log in

Quantum studies of the interaction of nanostructured graphene with polymethyl methacrylate for dental applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the most recent literature, it has been reported that the properties of polymethyl methacrylate (PMMA) for dental and biomedical applications are substantially improved by embedding graphene. However, there are few theoretical and atomistic simulation works reported in scientific journals that support clinical and experimental research on the subject. In this work, a theoretical process based on methods of the density functional theory (DFT) is presented to study at the quantum level the interaction of PMMA with graphene sheets. Specifically, an atomic model will be obtained, in its most stable state, of the polymethyl methacrylate-graphene (PG) compound to later determine its most active or maximum reactivity points and zones. In future perspectives, we will use the model and the results obtained in this work to carry out studies at the quantum, atomic, and molecular levels of the interaction of the PG compound with the cells of the buccal gums in order to find durability, biocompatibility, hardness, and antibacterial activity of the PG structure embedded in the buccal gum cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Graph 1
Graph 2

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Any further information email the corresponding author.

References

  1. El Bahra S, Ludwig K, Samran A, Freitag-Wolf S, Kern M (2013) Linear and volumetric dimensional changes of injection-molded PMMA denture base resins. Dent Mater 29:1091–1097. https://doi.org/10.1016/j.dental.2013.07.020

    Article  CAS  Google Scholar 

  2. Wen J, Jiang F, Yeh CK, Sun Y (2016) Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids Surf B 140:19–27. https://doi.org/10.1016/j.colsurfb.2015.12.028

    Article  CAS  Google Scholar 

  3. Cuijpers VMI, Jaroszewicz J, Anil S, Aldosari AAF, Walboomers XF, Jansen JA (2014) Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants. Clin Oral Implants Res 25(3):359–365. https://doi.org/10.1111/clr.12128

    Article  Google Scholar 

  4. Shahmohammadi M, Pensa E, Bhatia H, Yang B, Jursich G, Takoudis CG (2020) Enhancing the surface properties and functionalization of polymethyl methacrylate with atomic layer-deposited titanium(IV) oxide. J Mater Sci 55:17151–17169. https://doi.org/10.1007/s10853-020-05274-2

    Article  CAS  Google Scholar 

  5. Kaur H, Thakur A (2022) Applications of poly (methyl methacrylate) polymer in dentistry: a review. Mater Today: Proc 50(5):1619–1625. https://doi.org/10.1016/j.matpr.2021.09.125

    Article  CAS  Google Scholar 

  6. Matteis V, Cascione M, Toma CC, Albanese G, Giorgi ML, Corsalini M, Rinaldi R (2019) Silver nanoparticles addition in poly(methyl methacrylate) dental matrix: topographic and antimycotic studies. Int J Mol Sci 20(19):4691. https://doi.org/10.3390/ijms20194691

    Article  CAS  Google Scholar 

  7. Agarwalla SV, Malhotra R, Rosa V (2019) Translucency, hardness and strength parameters of PMMA resin containing graphene-like material for CAD/CAM restorations. J. Mech. Behav. Biomed. Mater 100(3):103388. https://doi.org/10.1016/j.jmbbm.2019.103388

    Article  CAS  Google Scholar 

  8. Astudillo-Rubio D, Delgado-Gaete A, Bellot-Arcís C, Montiel-Company JM, Pascual-Moscardó A, Almerich-Silla JM (2018) Mechanical properties of provisional dental materials: a systematic review and meta-analysis. Plos One 13(2):e0193162. https://doi.org/10.1371/journal.pone.0196264

    Article  Google Scholar 

  9. Kim SH, Watts DC (2004) Effect of glass-fiber reinforcement and water storage on fracture toughness (KIC) of polymer-based provisional crown and FPD materials. Int J Prosthodont 17(3):318–322

    Google Scholar 

  10. Faruq O, Sarkar K, Lee BT (2023) Physicochemical property and cytocompatibility of HyA-PEG loaded PMMA based bone cement. Mat. Chem. Phys 295:127142. https://doi.org/10.1016/j.matchemphys.2022.127142

    Article  CAS  Google Scholar 

  11. Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B (2015) Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig 19:2007–2013. https://doi.org/10.1007/s00784-015-1411-x

    Article  Google Scholar 

  12. Matsuo H, Suenaga H, Takahashi M, Suzuki O, Sasaki K, Takahashi N (2015) Deterioration of polymethyl methacrylate dentures in the oral cavity. Dent Mater J 34(2):234–239. https://doi.org/10.4012/dmj.2014-089

    Article  CAS  Google Scholar 

  13. Jung-Hwan L, Jeong-Ki J, Dong-Ae K, Kapil Dev P, Hae-Won K, Hae-Hyoung L (2018) Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent Mater 34(4):e63–e72. https://doi.org/10.1016/j.dental.2018.01.019

    Article  CAS  Google Scholar 

  14. Wang R, Tao J, Yu B, Dai L (2014) Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent 111(4):318–326. https://doi.org/10.1016/j.prosdent.2013.07.017

    Article  CAS  Google Scholar 

  15. Díez-Pascual AM (2022) PMMA-based nanocomposites for odontology applications: a state-of-the-art. Int J Mol Sci 23(18):10288. https://doi.org/10.3390/ijms231810288

    Article  CAS  Google Scholar 

  16. Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, Tavakoli M, Razzaghi M, Ismail AF, Ramakrishna S, Berto F (2020) Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: an overview of physical, mechanical, and biological properties. Polymers 12:1469. https://doi.org/10.3390/polym12071469

  17. Yang K, Feng L, Hong H, Cai W, Liu Z (2013) Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 8(12):2392–2403. https://doi.org/10.1038/nprot.2013.146

    Article  CAS  Google Scholar 

  18. Sabouhi M, Amini-Pozveh M, Bajoghli F, Dastjerd HR, Mohammadi R (2022) Synthesis and characterization of antifungal nanocomposite AgSiO2 polymethyl methacrylate. Eur J Dent 16(1):109–114. https://doi.org/10.1055/s-0041-1731831

    Article  Google Scholar 

  19. de Oliveira Limírio JPJ, de Luna Gomes JM, Alves Rezende MCR, AraújoLemos CA, Daltron Rosa CD, del R, PizaPellizzer E, (2022) Mechanical properties of polymethyl methacrylate as a denture base: conventional versus CAD-CAM resin - a systematic review and meta-analysis of in vitro studies. J Prosthet Dent 128(6):1221–1229. https://doi.org/10.1016/j.prosdent.2021.03.018

    Article  CAS  Google Scholar 

  20. Jastrzębska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14(12):1320–1340. https://doi.org/10.1007/s11051-012-1320-8

    Article  CAS  Google Scholar 

  21. Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, SaverioLudovichetti F, Piattelli A, Antoniac I, Bressan E, Zavan B (2018) Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials 8(5):349. https://doi.org/10.3390/nano8050349

    Article  CAS  Google Scholar 

  22. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969. https://doi.org/10.1016/j.joen.2008.04.009

    Article  Google Scholar 

  23. Ohlsson E, Galler KM, Widbiller M (2022) A compilation of study models for dental pulp regeneration. Int J Mol Sci 23(22):14361. https://doi.org/10.3390/ijms232214361

    Article  CAS  Google Scholar 

  24. Frazer RQ, Byron RT, Osborne PB, West KP (2015) PMMA: an essential material in medicine and dentistry. J Long Term Eff Med Implants 15(6):629–639. https://doi.org/10.1615/jlongtermeffmedimplants.v15.i6.60

    Article  Google Scholar 

  25. Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R (2017) Raustia A (2017) PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 12:3801–3812. https://doi.org/10.2147/IJN.S130722

    Article  CAS  Google Scholar 

  26. Kenry, Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterial 155:236–250. https://doi.org/10.1016/j.biomaterials.2017.10.004

    Article  CAS  Google Scholar 

  27. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186. https://doi.org/10.1021/nn1007176

    Article  CAS  Google Scholar 

  28. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464. https://doi.org/10.1039/c1nr10172b

    Article  CAS  Google Scholar 

  29. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194. https://doi.org/10.1038/nnano.2010.8

    Article  CAS  Google Scholar 

  30. Singh R, Ullah S, Rao N, Singh M, Patra I, Darko DA, Issac CPJ, Esmaeilzadeh-Salestani K, Kanaoujiya R, Vijayan, (2022) Synthesis of three-dimensional reduced-graphene oxide from graphene oxide. J Nanomater 8731429:1–18. https://doi.org/10.1155/2022/8731429

    Article  CAS  Google Scholar 

  31. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy". Phys Rev, B Condens Matter 45(23):13244–13249. https://doi.org/10.1103/physrevb.45.13244

    Article  CAS  Google Scholar 

  32. Eichinger BE, Rigby DR, Muir MH (1995) Computational chemistry applied to materials design-contact lenses. Comp Polym Sci 5(4):147–163

    CAS  Google Scholar 

  33. Frenking G, Shaik S (2014) The chemical bond. Chemical bonding across the periodic table. Edited by. Wiley- VCH, Darmstadt Germany. ISBN 978–3–527–33315–8

  34. Parr RG, Yang W (1994) Density-functional theory of atoms and molecules, Oxford University Press, New Clarendon Press, Oxford, Printed in USA. ISBN 0–19–504279–4

  35. Pearson RG (2005) Chemical Hardness: Applications from Molecules to Solids, Wiley-VCH, Printed in USA. ISBN 13: 978–3–527–29482–4, 978–3–527–60617–7

  36. Chattaraj PK, Girim S (2009) Electrophilicity index within a conceptual DFT framework. Annu Rep Sect C: Phys Chem 105:13–39. https://doi.org/10.1039/B802832J

    Article  CAS  Google Scholar 

  37. Allison TC, Tong YYJ (2013) Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochim Acta 101:334–340. https://doi.org/10.1016/j.electacta.2012.12.072

    Article  CAS  Google Scholar 

  38. Castro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  39. Gao H, Liu Z (2017) DFT study of NO adsorption on pristine graphene. RSC Adv 7:13082–13091. https://doi.org/10.1039/C6RA27137E

    Article  CAS  Google Scholar 

  40. Dejpasand MT, Saievar-Iranizad E, Bayat A, Montaghemi A, Ardekani SR (2020) Tuning HOMO and LUMO of three region (UV, Vis and IR) photoluminescent nitrogen doped graphene quantum dots for photodegradation of methylene blue. Mat. Res. Bull 128:110886. https://doi.org/10.1016/j.materresbull.2020.110886

    Article  CAS  Google Scholar 

  41. Seenithurai S, Pandyan RK, Kumar SV, Mahendran M (2013) Electronic properties of boron and nitrogen doped graphene. Nano Hybrids 5:65–83. https://doi.org/10.4028/www.scientific.net/NH.5.65

    Article  CAS  Google Scholar 

  42. Bregnocchi A, Zanni E, Uccelletti D, Marra F, Cavallini D, De Angelis F, de Bellis G, Bossù M, Ierardo G, Polimeni A, Sarto MS (2017) Graphene-based dental adhesive with anti-biofilm activity. J Nanobiotechnology 15(1):89. https://doi.org/10.1186/s12951-017-0322-1

    Article  CAS  Google Scholar 

  43. Zanni E, Chandraiahgari CR, De Bellis G, Montereali MR, Armiento G, Ballirano P, Polimeni A, Sarto MS, Uccelletti D (2016) Zinc oxide nanorods-decorated graphene nanoplatelets: a promising antimicrobial agent against the cariogenic bacterium Streptococcus mutans. Nanomaterials 6(10):179. https://doi.org/10.3390/nano6100179

    Article  CAS  Google Scholar 

  44. Pinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B Biointerfaces 111:188–202. https://doi.org/10.1016/j.colsurfb.2013.05.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National System of Researchers (SNI) of the National Council of Science and Technology (CONACYT) of Mexico, to the Universidad Autónoma de la Ciudad de México, UACM, and to the Instituto Politécnico Nacional, IPN, from Mexico City. We acknowledge the partial economical supports, from the mentioned Mexican institutions, as well for their facilities, what let us accomplish satisfactory the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Garcia-Quiroz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Chávez, E., Estrada-Hernández, J., Garcia-Quiroz, A. et al. Quantum studies of the interaction of nanostructured graphene with polymethyl methacrylate for dental applications. J Nanopart Res 25, 101 (2023). https://doi.org/10.1007/s11051-023-05757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05757-8

Keywords

Navigation