Skip to main content
Log in

A nanotherapeutic approach for fighting the odds against the malignant disorders

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cancer, a combination of haematological and neoplastic malignancies, is a dreadful disease accounting for major fatalities worldwide. The domain of innovative nanoparticle-based technology has revolutionized the field of cancer therapeutics and imaging. With an emphasis on various nano-immunotherapeutic approaches, this study highlights the most recent developments in nano-immune engineering for metastatic tumours. Nanotechnology-based cancer immunotherapy has powered the (i) activation of T-cells in the tumour microenvironment (TME), (ii) preparation of efficient nanovaccines via nano-carriers and (iii) generation of smart nanomaterials which change their size/shape (size range of 1 to 1000 nm) and functionality upon activation in TME. The tumour microenvironment has an important, albeit contentious, role in controlling nanoparticle (NP) dispersion and subsequent biological consequences. The current study promotes the harnessing of potential peripheral immune cells by avoiding the creation of a pre-metastatic niche and, thus, suppressing tumour recurrence. This review descriptively accounts for a wide array of nanomaterials based on their polymeric constituents. Moreover, the current article explores the obstacles of integrating nanoscale immunomodulators and presents a forward-looking view of the novel nanotechnology-based approaches that may eventually prove helpful in eliminating metastatic illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ALL:

Acute lymphoblastic leukaemia

CAR:

Chimeric antigen receptor

BsAbs:

Bispecific antibodies

MAbs:

Monospecific monoclonal antibodies

TME:

Tumour microenvironment

ECM:

Extracellular matrix

BM:

Basement membrane

EPR:

Enhanced permeability and retention effect

AML:

Acute myeloid leukaemia

PRR:

Pathogenic recognition receptor

APC:

Antigen-presenting cell

TLR:

Toll-like receptor

MPS:

Mononuclear phagocyte system

INP:

Inorganic nanoparticle

MNP:

Magnetic nanoparticle

QD:

Quantum dots

CNP:

Carbon-based nanoparticle

PTT:

Photothermal therapy

PDT:

Photodynamic therapy

CNT:

Carbon nanotube

SWNT:

Single-walled nanotube

MWNT:

Multi-walled nanotube

PS:

Photosensitizers

PNP:

Polymeric nanoparticles

LNP:

Lipid-based nanoparticles

LBDD:

Lipid-based drug delivery

SLN:

Solid lipid nanoparticle

NLC:

Nanostructured lipid carrier

TAA:

Tumour-associated antigens

PRR:

Pattern recognition receptor

DC:

Dendritic cell

MPI:

Magnetic particle imaging

TAM:

Tumour-associated macrophages

References

  1. “Cancer.” https://www.who.int/news-room/fact-sheets/detail/cancer (accessed Jun. 28, 2022)

  2. Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ (2021) Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol 16(1):25–36. https://doi.org/10.1038/S41565-020-00822-Y

    Article  CAS  Google Scholar 

  3. O’Leary MC et al (2019) FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res 25(4):1142–1146. https://doi.org/10.1158/1078-0432.CCR-18-2035

    Article  Google Scholar 

  4. Bouchkouj N et al (2019) FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res 25(6):1702–1708. https://doi.org/10.1158/1078-0432.CCR-18-2743

    Article  Google Scholar 

  5. Guedan S, Ruella M, June CH (2019) Emerging cellular therapies for cancer. Annu Rev Immunol 37:145–171. https://doi.org/10.1146/annurev-immunol-042718-041407

    Article  CAS  Google Scholar 

  6. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365. https://doi.org/10.1126/science.aar6711

    Article  CAS  Google Scholar 

  7. Saini S, Kumar Y (2021) “Bispecific antibodies: a promising entrant in cancer immunotherapy,” Translational biotechnology: a journey from laboratory to clinics, pp 233–266. https://doi.org/10.1016/B978-0-12-821972-0.00014-9

  8. Zhang P et al (2021) Nanotechnology-enhanced immunotherapy for metastatic cancer. The Innovation 2(4):100174. https://doi.org/10.1016/J.XINN.2021.100174

    Article  CAS  Google Scholar 

  9. Schuster M, Nechansky A, Loibner H, Kircheis R (2006) Cancer immunotherapy. Biotechnol J 1(2):138–147. https://doi.org/10.1002/BIOT.200500044

    Article  CAS  Google Scholar 

  10. Kalos M et al (2011) T Cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73. https://doi.org/10.1126/SCITRANSLMED.3002842

    Article  CAS  Google Scholar 

  11. Tang J, Shen D, Zhang J, Ligler FS, Cheng K (2015) Bispecific antibodies, nanoparticles and cells: bringing the right cells to get the job done. Expert Opin Biol Ther 15(9):1251. https://doi.org/10.1517/14712598.2015.1049944

    Article  CAS  Google Scholar 

  12. Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK (2022) Smart nanomaterials for cancer diagnosis and treatment. Nano Converg 9(1):1–39. https://doi.org/10.1186/S40580-022-00313-X

    Article  Google Scholar 

  13. Wang Y, Zhang L, Guo S, Hatefi A, Huang L (2013) Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery. J Control Release 172(1):179–189. https://doi.org/10.1016/J.JCONREL.2013.08.015

    Article  CAS  Google Scholar 

  14. Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7:49. https://doi.org/10.2147/IJN.S26766

    Article  CAS  Google Scholar 

  15. Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK (2019) Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 6(1):1–30. https://doi.org/10.1186/S40580-019-0193-2

    Article  CAS  Google Scholar 

  16. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  17. Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605. https://doi.org/10.1038/nri3488

    Article  CAS  Google Scholar 

  18. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapY. Chem Rev 115(19):11109–11146. https://doi.org/10.1021/ACS.CHEMREV.5B00109/ASSET/IMAGES/ACS.CHEMREV.5B00109.SOCIAL.JPEG_V03

    Article  CAS  Google Scholar 

  19. Bignold LP (2020) “Immunotherapies”. Principles of Tumors, pp 419–438. https://doi.org/10.1016/B978-0-12-816920-9.00016-X

  20. Shams F et al (2022) Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 49(2):1389–1412. https://doi.org/10.1007/S11033-021-06876-Y

    Article  CAS  Google Scholar 

  21. Nano-enabled immunomodulation (2021). Nat Nanotechnol 16:1. https://doi.org/10.1038/s41565-020-00842-8

  22. Yang M, Li J, Gu P, Fan X (2021) The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater 6(7):1973–1987. https://doi.org/10.1016/J.BIOACTMAT.2020.12.010

    Article  CAS  Google Scholar 

  23. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596. https://doi.org/10.1242/JCS.116392

    Article  CAS  Google Scholar 

  24. Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F (2020) Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 8:627. https://doi.org/10.3389/FBIOE.2020.00627/BIBTEX

    Article  Google Scholar 

  25. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. https://doi.org/10.1038/nbt.3330

  26. Wang L, Huo M, Chen Y, Shi J (2018) Tumor microenvironment-enabled nanotherapy. Adv Healthc Mater 7(8):1701156. https://doi.org/10.1002/ADHM.201701156

    Article  Google Scholar 

  27. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. https://doi.org/10.1038/nm.3394

  28. Dang Y, Guan J (2020) Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 1:10–19. https://doi.org/10.1016/J.SMAIM.2020.04.001

    Article  Google Scholar 

  29. Miao L, Huang L (2015) Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res 166:193. https://doi.org/10.1007/978-3-319-16555-4_9

    Article  CAS  Google Scholar 

  30. Ahmad F, Wang X, Li W (2019) Toxico-metabolomics of engineered nanomaterials: progress and challenges. Adv Funct Mater 29(51):1904268. https://doi.org/10.1002/ADFM.201904268

    Article  CAS  Google Scholar 

  31. Westmeier D et al (2018) Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori. Nanoscale 10(3):1453–1463. https://doi.org/10.1039/C7NR06573F

    Article  CAS  Google Scholar 

  32. Cao L, Yuan J, Chen M, Shangguan W (2010) Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique. J Environ Sci 22(3):454–459. https://doi.org/10.1016/S1001-0742(09)60129-7

    Article  CAS  Google Scholar 

  33. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. https://doi.org/10.1016/J.DEVCEL.2011.07.001

    Article  CAS  Google Scholar 

  34. Inoue S (1989) Ultrastructure of basement membranes. Int Rev Cytol 117(C):57–98. https://doi.org/10.1016/S0074-7696(08)61334-0

    Article  CAS  Google Scholar 

  35. Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74(16):4239–4246. https://doi.org/10.1158/0008-5472.CAN-13-3494/657846/AM/CAPILLARY-WALL-COLLAGEN-AS-A-BIOPHYSICAL-MARKER-OF

    Article  CAS  Google Scholar 

  36. Singh M, Ma R, Zhu L (2021) Theoretical evaluation of enhanced gold nanoparticle delivery to PC3 tumors due to increased hydraulic conductivity or recovered lymphatic function after mild whole body hyperthermia. Med Biol Eng Comput 59(2):301–313. https://doi.org/10.1007/S11517-020-02308-4

    Article  Google Scholar 

  37. Nikmaneshi MR, Firoozabadi B, Mozafari A, Munn LL (2020) A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth. Sci Rep 10(1):1–20. https://doi.org/10.1038/s41598-020-59658-0

    Article  CAS  Google Scholar 

  38. El-Kareh AW, Secomb TW 1995 “Effect of increasing vascular hydraulic conductivity on delivery of macromolecular drugs to tumor cells”. Int J Radiat Oncol*Biol*Phys 32(5):1419–1423. https://doi.org/10.1016/0360-3016(95)00110-K

  39. Kanapathipillai M, Brock A, Ingber DE (2014) Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 79–80:107–118. https://doi.org/10.1016/J.ADDR.2014.05.005

    Article  Google Scholar 

  40. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815. https://doi.org/10.1016/S0002-9440(10)63540-7

    Article  Google Scholar 

  41. Yurchenco PD, Ruben GC (1987) Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol 105(6):2559–2568. https://doi.org/10.1083/JCB.105.6.2559

    Article  CAS  Google Scholar 

  42. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

  43. Puri A et al (2009) “Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic”, Critical Reviews&trade. Therapeutic Drug Carrier Systems 26(6):523–580. https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V26.I6.10

    Article  CAS  Google Scholar 

  44. Samir A, Elgamal BM, Gabr H, Sabaawy HE (2015) Nanotechnology applications in hematological malignancies (Review). Oncol Rep 34(3):1097. https://doi.org/10.3892/OR.2015.4100

    Article  CAS  Google Scholar 

  45. Ferrara F, Schiffer CA (2013) Acute myeloid leukaemia in adults. The Lancet 381(9865):484–495. https://doi.org/10.1016/S0140-6736(12)61727-9

    Article  Google Scholar 

  46. Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L (2019) Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics 9(25):7826–7848. https://doi.org/10.7150/THNO.37216

    Article  CAS  Google Scholar 

  47. Dubensky TW, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22(3):155–161. https://doi.org/10.1016/J.SMIM.2010.04.007

    Article  CAS  Google Scholar 

  48. Apostólico Jde S, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS (2016) Adjuvants: classification, modus operandi, and licensing. J Immunol Res 2016:1459394. https://doi.org/10.1155/2016/1459394

  49. Smith TT et al (2017) In situ programming of leukaemia-specific T cells using synthetic DNA nano-carriers. Nat Nanotechnol 12(8):813–820. https://doi.org/10.1038/nnano.2017.57

    Article  CAS  Google Scholar 

  50. García KP et al (2014) Zwitterionic-coated ‘stealth’ nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529. https://doi.org/10.1002/SMLL.201303540

    Article  Google Scholar 

  51. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533. https://doi.org/10.1038/nrm3151

    Article  CAS  Google Scholar 

  52. Cevaal PM et al (2021) In vivo T cell-targeting nanoparticle drug delivery systems: considerations for rational design. ACS Nano 15(3):3736–3753. https://doi.org/10.1021/ACSNANO.0C09514/ASSET/IMAGES/MEDIUM/NN0C09514_0008.GIF

    Article  CAS  Google Scholar 

  53. Selby LI, Cortez-Jugo CM, Such GK, Johnston APR (2017) Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5):e1452. https://doi.org/10.1002/WNAN.1452

    Article  Google Scholar 

  54. Dai Q, Bertleff-Zieschang N, Braunger JA, Björnmalm M, Cortez-Jugo C, Caruso F (2018) Particle targeting in complex biological media. Adv Healthc Mater 7(1):1700575. https://doi.org/10.1002/ADHM.201700575

    Article  Google Scholar 

  55. Schmid D et al (2017) “T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun 8(1):1–12. https://doi.org/10.1038/s41467-017-01830-8

    Article  CAS  Google Scholar 

  56. Hao M, Chen B, Zhao X, Zhao N, Xu FJ (2020) Organic/inorganic nanocomposites for cancer immunotherapy. Mater Chem Front 4(9):2571–2609. https://doi.org/10.1039/D0QM00323A

    Article  CAS  Google Scholar 

  57. Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347(1):46–53. https://doi.org/10.1016/J.CANLET.2014.02.006

    Article  CAS  Google Scholar 

  58. Paul W, Sharma CP (2020) Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials. https://doi.org/10.1016/B978-0-08-102680-9.00013-5

  59. Santos HA, Bimbo LM, Peltonen L, Hirvonen J (2015) Chapter 18: Inorganic Nanoparticles in Targeted Drug Delivery and Imaging (Book Chapter). In: Sanyog J, Devarajan P (eds) Targeted drug delivery – concepts and design (Advances in Delivery Science and Technology). Springer International Publishing, pp 571–613

  60. Bayda S et al (2017) Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem 25(34):4269–4303. https://doi.org/10.2174/0929867325666171229141156

    Article  CAS  Google Scholar 

  61. Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Báo SN, Radicchi MA (2021) Nano-carriers used in drug delivery to enhance immune system in cancer therapy. Pharmaceutics 13(8):1167. https://doi.org/10.3390/PHARMACEUTICS13081167

    Article  Google Scholar 

  62. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):1–14. https://doi.org/10.1186/1556-276X-8-381/FIGURES/10

    Article  Google Scholar 

  63. Wang F et al (2018) Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. Mater Sci Eng C 90:46–56. https://doi.org/10.1016/J.MSEC.2018.04.030

    Article  CAS  Google Scholar 

  64. Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19(4):474–481. https://doi.org/10.1016/J.DRUDIS.2013.10.005

    Article  CAS  Google Scholar 

  65. Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6(24):21859–21873. https://doi.org/10.1021/AM5036225/ASSET/IMAGES/LARGE/AM-2014-036225_0010.JPEG

    Article  CAS  Google Scholar 

  66. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265. https://doi.org/10.1016/J.ADDR.2008.03.018

    Article  CAS  Google Scholar 

  67. Zanganeh S et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994. https://doi.org/10.1038/nnano.2016.168

    Article  CAS  Google Scholar 

  68. Mukherjee S, Liang L, Veiseh O (2020) Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 12(2):147. https://doi.org/10.3390/pharmaceutics12020147

  69. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel) 12(4):617. https://doi.org/10.3390/ma12040617

  70. Montaseri H, Kruger CA, Abrahamse H (2021) Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics 13(3):296. https://doi.org/10.3390/PHARMACEUTICS13030296

    Article  CAS  Google Scholar 

  71. Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14(5):572–594. https://doi.org/10.2174/1568026614666140118203550

    Article  CAS  Google Scholar 

  72. Ramishetti S et al (2015) Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9(7):6706–6716. https://doi.org/10.1021/ACSNANO.5B02796

    Article  CAS  Google Scholar 

  73. Zheng Y, Stephan MT, Gai SA, Abraham W, Shearer A, Irvine DJ (2013) In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J Control Release 172(2):426–435. https://doi.org/10.1016/J.JCONREL.2013.05.037

    Article  CAS  Google Scholar 

  74. Kim SS et al (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18(2):370–376. https://doi.org/10.1038/MT.2009.271

    Article  CAS  Google Scholar 

  75. Ou W et al (2018) Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Control Release 281:84–96. https://doi.org/10.1016/J.JCONREL.2018.05.018

    Article  CAS  Google Scholar 

  76. Dunn ZS, Mac J, Wang P (2019) “T cell immunotherapy enhanced by designer biomaterials”. Biomaterials 217. https://doi.org/10.1016/J.BIOMATERIALS.2019.119265

  77. Lee CK, Atibalentja DF, Yao LE, Park J, Kuruvilla S, Felsher DW (2022) Anti-PD-L1 F(ab) conjugated PEG-PLGA nanoparticle enhances immune checkpoint therapy. Nanotheranostics 6(3):243. https://doi.org/10.7150/NTNO.65544

    Article  Google Scholar 

  78. Ding Q et al (2015) Targeting and liposomal drug delivery to CD40L expressing T cells for treatment of autoimmune diseases. J Control Release 207:86–92. https://doi.org/10.1016/J.JCONREL.2015.03.035

    Article  CAS  Google Scholar 

  79. Yang YSS et al (2018) Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater Sci 7(1):113–124. https://doi.org/10.1039/C8BM01208C

    Article  Google Scholar 

  80. Xie Y et al (2016) Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 229:120–129. https://doi.org/10.1016/J.JCONREL.2016.03.029

    Article  CAS  Google Scholar 

  81. Kandil R, Xie Y, Heermann R, Isert L, Jung K, Mehta A, Merkel OM (2019) Coming in and finding out: blending receptor-targeted delivery and efficient endosomal escape in a novel bio-responsive sirna delivery system for gene knockdown in Pulmonary T cells. Adv Ther (Weinh) 2(7):1900047. https://doi.org/10.1002/adtp.201900047

  82. Kosmides AK, Sidhom JW, Fraser A, Bessell CA, Schneck JP (2017) Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano 11(6):5417–5429. https://doi.org/10.1021/ACSNANO.6B08152/SUPPL_FILE/NN6B08152_SI_001.PDF

    Article  CAS  Google Scholar 

  83. Soenen S, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt S, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. NANO TODAY 6(5):446–465. https://doi.org/10.1016/j.nantod.2011.08.001

    Article  CAS  Google Scholar 

  84. Devi S et al (2022) Quantum dots: an emerging approach for cancer therapy. Front Mater 8:585. https://doi.org/10.3389/FMATS.2021.798440/BIBTEX

    Article  Google Scholar 

  85. Chen L, Liang J (2020) An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng: C 112:110924. https://doi.org/10.1016/J.MSEC.2020.110924

    Article  CAS  Google Scholar 

  86. Wen L et al (2014) Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials 35(7):2295–2301. https://doi.org/10.1016/J.BIOMATERIALS.2013.11.069

    Article  CAS  Google Scholar 

  87. S. Tope, S. Saudagar, N. Kale, S. Khambayat, and K. Bhise, “Review: therapeutic application of quantum dots (QD),” THE PHARMA INNOVATION-JOURNAL, vol. 2, no. 12, 2014, Accessed: Jun. 28, 2022. [Online]. Available: www.thepharmajournal.com

  88. Tang L et al (2022) Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun 42(2):141–163. https://doi.org/10.1002/CAC2.12255

    Article  Google Scholar 

  89. Song G et al (2019) Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats. Dent Mater J 38(1):127–135. https://doi.org/10.4012/DMJ.2017-313

    Article  CAS  Google Scholar 

  90. Hesp NCH et al (2021) “Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene”. Nat Commun 12(1). https://doi.org/10.1038/S41467-021-21862-5

  91. Sharma H, Mondal S (2020) Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci 21(17):6280. https://doi.org/10.3390/IJMS21176280

    Article  CAS  Google Scholar 

  92. Zheng Y et al (2021) “2D nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges”. Adv Healthc Mater 10(7). https://doi.org/10.1002/ADHM.202001743.

  93. Karimi Shervedani R, Samiei Foroushani M, Kefayat A, Torabi M, Rahnemaye Rahsepar F (2018) Construction and characterization of a theranostic system based on graphene/manganese chelate. Biosens Bioelectron. 117:794–801. https://doi.org/10.1016/J.BIOS.2018.07.011

    Article  CAS  Google Scholar 

  94. Choi Y et al (2020) Graphene oxide nanoribbon hydrogel: viscoelastic behavior and use as a molecular separation membrane. ACS Nano 14(9):12195–12202. https://doi.org/10.1021/ACSNANO.0C05902

    Article  CAS  Google Scholar 

  95.  Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M (2021) “Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations,. Adv Colloid Interface Sci 294:102471.  https://doi.org/10.1016/J.CIS.2021.102471

  96. Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS (2020) Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(2):e1590. https://doi.org/10.1002/WNAN.1590

    Article  Google Scholar 

  97. Hess KL, Medintz IL, Jewell CM (2019) Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27:73–98. https://doi.org/10.1016/J.NANTOD.2019.04.005

    Article  CAS  Google Scholar 

  98. Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26(8):617–632. https://doi.org/10.1080/1061186X.2017.1400553

    Article  CAS  Google Scholar 

  99. Shariatzadeh S et al (2022) Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon. Front Bioeng Biotechnol 10:219. https://doi.org/10.3389/FBIOE.2022.847433/BIBTEX

    Article  Google Scholar 

  100. Evans ER, Bugga P, Asthana V, Drezek R (2018) Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington) 21(6):673. https://doi.org/10.1016/J.MATTOD.2017.11.022

    Article  CAS  Google Scholar 

  101. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci 368(1915):1333–1383. https://doi.org/10.1098/RSTA.2009.0273

    Article  CAS  Google Scholar 

  102. Salatin S, Maleki Dizaj S, Yari Khosroushahi A (2015) Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39(8):881–90. https://doi.org/10.1002/cbin.10459

    Article  CAS  Google Scholar 

  103. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7(5):3926–3938. https://doi.org/10.1021/nn3057005

    Article  CAS  Google Scholar 

  104. Kennedy LC et al (2011) T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett 6(1):283. https://doi.org/10.1186/1556-276X-6-283

    Article  CAS  Google Scholar 

  105. Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng 9:105–127. https://doi.org/10.1146/annurev-chembioeng-060817-084055

  106. Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:17. https://doi.org/10.3389/FPHAR.2021.601626/BIBTEX

    Article  Google Scholar 

  107. Li B, Li Q, Mo J, Dai H (2017) Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol 8(1):51. https://doi.org/10.3389/FPHAR.2017.00051/BIBTEX

    Article  Google Scholar 

  108. Ahuja R, Panwar N, Meena J, Singh M, Sarkar DP, Panda AK (2020) Natural products and polymeric nano-carriers for cancer treatment: a review. Environ Chem Lett 18(6):2021–2030. https://doi.org/10.1007/S10311-020-01056-Z/TABLES/4

    Article  CAS  Google Scholar 

  109. Anju S, Prajitha N, Sukanya VS, Mohanan PV (2020) Complicity of degradable polymers in health-care applications. Mater Today Chem 16:100236. https://doi.org/10.1016/J.MTCHEM.2019.100236

    Article  CAS  Google Scholar 

  110. Su S, Kang PM (2020) Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials 10(656):656. https://doi.org/10.3390/NANO10040656

    Article  CAS  Google Scholar 

  111. Avramović N, Mandić B, Savić-Radojević A, Simić T (2020) “Polymeric nano-carriers of drug delivery systems in cancer therapy”. Pharmaceutics 12(4). https://doi.org/10.3390/PHARMACEUTICS12040298

  112. Gagliardi M (2017) Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv 8(5):289–299. https://doi.org/10.4155/tde-2017-0013

  113. Cisneros CG, Bloemen V, Mignon A (2021) Synthetic, natural, and semisynthetic polymer carriers for controlled nitric oxide release in dermal applications: a review. Polymers (Basel) 13(5):1–26. https://doi.org/10.3390/POLYM13050760

    Article  Google Scholar 

  114. Sithole MN, Choonara YE, du Toit LC, Kumar P, Pillay V (2017) A review of semi-synthetic biopolymer complexes: modified polysaccharide nano-carriers for enhancement of oral drug bioavailability. Pharm Dev Technol 22(2):283–295. https://doi.org/10.1080/10837450.2016.1212882

  115. Rahman M, Hasan MR (2019) “Synthetic biopolymers” 1–43. https://doi.org/10.1007/978-3-319-95990-0_1

  116. Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  Google Scholar 

  117. Kulkarni JA, Cullis PR, Van Der Meel R (2018) Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther 28(3):146–157. https://doi.org/10.1089/NAT.2018.0721

    Article  CAS  Google Scholar 

  118. Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm (Cairo) 2014:1–10. https://doi.org/10.1155/2014/801820

    Article  CAS  Google Scholar 

  119. Mehanna MM, Mneimneh AT (2021) Formulation and applications of lipid-based nanovehicles: spotlight on self-emulsifying systemS. Adv Pharm Bull 11(1):56–67. https://doi.org/10.34172/apb.2021.006

    Article  CAS  Google Scholar 

  120. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) “Advances and challenges of liposome assisted drug delivery”. Front Pharmacol 6:(DEC).https://doi.org/10.3389/FPHAR.2015.00286.

  121. Mahmoud K, Swidan S, El-Nabarawi M, Teaima M (2022) Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 20(1):1–42. https://doi.org/10.1186/S12951-022-01309-9

    Article  Google Scholar 

  122. Hua S, Wu SY (2013) “The use of lipid-based nano-carriers for targeted pain therapies”. Front Pharmacol 4. https://doi.org/10.3389/FPHAR.2013.00143.

  123. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305–313. https://doi.org/10.15171/APB.2015.043

    Article  CAS  Google Scholar 

  124. B. García-Pinel et al (2019) “Lipid-based nanoparticles: application and recent advances in cancer treatment”. Nanomaterials 9(4). https://doi.org/10.3390/NANO9040638

  125. Le MQ, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D (2018) Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Int J Pharm 550(1–2):316–324. https://doi.org/10.1016/j.ijpharm.2018.08.054

  126. Rasmussen MK, Pedersen JN, Marie R (2020) Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 11(1):1–8. https://doi.org/10.1038/s41467-020-15889-3

    Article  CAS  Google Scholar 

  127. Chauhan I, Yasir M, Verma M, Singh AP (2020) Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv Pharm Bull 10(2):150–165. https://doi.org/10.34172/apb.2020.021

    Article  CAS  Google Scholar 

  128. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT (2021) Lipid nanoparticles as carriers for bioactive delivery. Front Chem 9:268. https://doi.org/10.3389/FCHEM.2021.580118/BIBTEX

    Article  Google Scholar 

  129. M. Üner, “Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems,” Pharmazie, vol. 61, no. 5, pp. 375–386, May 2006, Accessed: Jun. 30, 2022. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/16724531/

  130. Zhang Y, Lin S, Wang XY, Zhu G (2019) Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(5):e1559. https://doi.org/10.1002/WNAN.1559

    Article  Google Scholar 

  131. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. https://doi.org/10.1038/nature10673

    Article  CAS  Google Scholar 

  132. Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) “DNA vaccines: developing new strategies against cancer”. J Biomed Biotechnol 2010. https://doi.org/10.1155/2010/174378

  133. Bernhard H, Salazar L, Schiffman K, Smorlesi A, Schmidt B, Knutson KL, Disis ML (2002) Vaccination against the HER-2/neu oncogenic protein. Endocrine-Related Cancer Endocr Relat Cancer Endocr. Relat Cancer 9(1):33–44. https://erc.bioscientifica.com/view/journals/erc/9/1/11914181.xml

  134. Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B (2021) Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 21(2):201–218. https://doi.org/10.1080/14712598.2020.1815704

  135. Peng M et al (2019) Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer 18(1):1–14. https://doi.org/10.1186/S12943-019-1055-6

    Article  Google Scholar 

  136. Zhang Z et al (2021) Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol 12:1297. https://doi.org/10.3389/FIMMU.2021.672356/BIBTEX

    Article  Google Scholar 

  137. Keskin DB et al (2018) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565(7738):234–239. https://doi.org/10.1038/s41586-018-0792-9

    Article  CAS  Google Scholar 

  138. Hu HG, Li YM (2020) Emerging adjuvants for cancer immunotherapy. Front Chem 8:601. https://doi.org/10.3389/FCHEM.2020.00601/BIBTEX

    Article  CAS  Google Scholar 

  139. Temizoz B, Kuroda E, Ishii KJ (2016) Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 28(7):329–338. https://doi.org/10.1093/INTIMM/DXW015

    Article  CAS  Google Scholar 

  140. Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A (2014) “Current adjuvants and new perspectives in vaccine formulation”. 10(7):1053–1061. https://doi.org/10.1586/ERV.11.48.

  141. Banday AH, Jeelani S, Hruby VJ (2014) “Cancer vaccine adjuvants – recent clinical progress and future perspectives”. 37(1):1–11. https://doi.org/10.3109/08923973.2014.971963

  142. Ni Q et al (2020) A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv 6(12):6071–6089. https://doi.org/10.1126/SCIADV.AAW6071/SUPPL_FILE/AAW6071_SM.PDF

    Article  Google Scholar 

  143. Aikins ME, Xu C, Moon JJ (2020) Engineered nanoparticles for cancer vaccination and immunotherapy. Acc Chem Res 53(10):2094–2105. https://doi.org/10.1021/ACS.ACCOUNTS.0C00456/ASSET/IMAGES/MEDIUM/AR0C00456_0007.GIF

    Article  CAS  Google Scholar 

  144. Kenchegowda M et al (2021) Smart nano-carriers as an emerging platform for cancer therapy: a review. Molecules 27(1):146. https://doi.org/10.3390/MOLECULES27010146

    Article  Google Scholar 

  145. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nano-carriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79. https://doi.org/10.1016/J.EJPB.2015.03.018

    Article  Google Scholar 

  146. Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W (2021) Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics 13(8):1151. https://doi.org/10.3390/PHARMACEUTICS13081151

    Article  CAS  Google Scholar 

  147. Xia Q, Zhang Y, Li Z, Hou X, Feng N (2019) Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9(4):675–689. https://doi.org/10.1016/J.APSB.2019.01.011

    Article  Google Scholar 

  148. Rossi L et al (2016) Engineering erythrocytes for the modulation of drugs’ and contrasting agents’ pharmacokinetics and biodistribution. Adv Drug Deliv Rev 106:73–87. https://doi.org/10.1016/J.ADDR.2016.05.008

    Article  CAS  Google Scholar 

  149. Han X, Wang C, Liu Z (2018) Red blood cells as Smart Delivery Systems. Bioconjug Chem 29(4):852–860. https://doi.org/10.1021/ACS.BIOCONJCHEM.7B00758/ASSET/IMAGES/MEDIUM/BC-2017-00758Z_0006.GIF

    Article  CAS  Google Scholar 

  150. Persano S, Das P, Pellegrino T (2021) Magnetic nanostructures as emerging therapeutic tools to boost anti-tumour immunity. Cancers 13(11):2735. https://doi.org/10.3390/CANCERS13112735

    Article  CAS  Google Scholar 

  151. Rivera-Rodriguez A et al (2021) Tracking adoptive t cell immunotherapy using magnetic particle imaging. Nanotheranostics 5(4):431–444. https://doi.org/10.7150/NTNO.55165

    Article  Google Scholar 

  152. Hussein-Al-Ali SH, Hussein MZ, Bullo S, Arulselvan P (2021) Chlorambucil-iron oxide nanoparticles as a drug delivery system for leukemia cancer cells. Int J Nanomed 16:6205–6216. https://doi.org/10.2147/IJN.S312752

    Article  Google Scholar 

  153. Li N, Peng LH, Chen X, Nakagawa S, Gao JQ (2011) Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers. Vaccine 29(37):6179–6190. https://doi.org/10.1016/J.VACCINE.2011.06.086

    Article  CAS  Google Scholar 

  154. Wakabayashi R, Sakuragi M, Kozaka S, Tahara Y, Kamiya N, Goto M (2018) Solid-in-oil peptide nano-carriers for transcutaneous cancer vaccine delivery against melanoma. Mol Pharm 15(3):955–961. https://doi.org/10.1021/ACS.MOLPHARMACEUT.7B00894/SUPPL_FILE/MP7B00894_SI_001.PDF

    Article  CAS  Google Scholar 

  155. Kitaoka M, Wakabayashi R, Kamiya N, Goto M (2016) Solid-in-oil nanodispersions for transdermal drug delivery systems. Biotechnol J 11(11):1375–1385. https://doi.org/10.1002/BIOT.201600081

    Article  CAS  Google Scholar 

  156. Ahmad F, Abubshait SA, Abubshait HA (2020) Untargeted metabolomics for Achilles heel of engineered nanomaterials’ risk assessment. Chemosphere 262:128058–128058. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128058

    Article  Google Scholar 

  157. Kawai S, Niwano M, Sato M (2019) A risk assessment framework for self-management of poorly soluble low toxic nanomaterials. Heliyon 5(8):e02165. https://doi.org/10.1016/J.HELIYON.2019.E02165

    Article  Google Scholar 

  158. Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50. https://doi.org/10.1016/J.ENVINT.2012.11.009

    Article  Google Scholar 

  159. Nicoletta FP, Iemma F (2023) Nanomaterials for drug delivery and cancer therapy. Nanomaterials 13(1):207. https://doi.org/10.3390/nano13010207

  160. Zhang D, Ma XL, Gu Y, Huang H, Zhang GW (2020) Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 8:799. https://doi.org/10.3389/FCHEM.2020.00799/BIBTEX

    Article  CAS  Google Scholar 

  161. Gill P (2013) Nano-carriers, nanovaccines, and nanobacteria as nanobiotechnological concerns in modern vaccines. Scientia Iranica 20(3):1003–1013. https://doi.org/10.1016/J.SCIENT.2013.05.012

    Article  Google Scholar 

  162. Swami A et al (2014) Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A 111(28):10287–10292. https://doi.org/10.1073/PNAS.1401337111/SUPPL_FILE/PNAS.201401337SI.PDF

    Article  CAS  Google Scholar 

  163. Chen F et al (2018) Synthesis of CuInZnS quantum dots for cell labelling applications. Ceram Int 44:S34–S37. https://doi.org/10.1016/J.CERAMINT.2018.08.276

    Article  CAS  Google Scholar 

  164. Wu F, Yuan H, Zhou C, Mao M, Liu Q, Shen H, Cen Y, Qin Z, Ma L, Song Li L (2016) Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens Bioelectron 77:464–470. https://doi.org/10.1016/j.bios.2015.10.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS, SG and PD conceptualized the review article. SG and PD collected and prepared the data for the table. SS, SG and PD prepared the figures. SS, PD and SG wrote the manuscript. SS, PD and SG compiled the manuscript. YK guided, reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yatender Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submission declaration and verification.

The authors declare that the work described has not been published previously and that it is not under consideration for publication elsewhere; if accepted, it will not be published elsewhere in the same form, in English or any other language, including electronically, without the written consent of the copyright holder.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Dagar, P., Gupta, S. et al. A nanotherapeutic approach for fighting the odds against the malignant disorders. J Nanopart Res 25, 116 (2023). https://doi.org/10.1007/s11051-023-05754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05754-x

Keywords

Navigation