Skip to main content
Log in

In situ growth of Ag nanoparticles on pristine graphene and their applications in conductive ink

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene decorated with Ag nanoparticles can cross the defect and bridge the adjacent graphene sheets to enhance its conductivity, making the composite more suitable for conductive ink preparation rather than pure graphene. In this study, a facile one-pot method to prepare Ag NPs@graphene nanocomposite is proposed. Graphite is exfoliated by low-speed mechanical agitation and low-power ultrasonic to obtain pristine graphene, which has fewer structural defects and intrinsic defects than RGO. Then, Ag nanoparticles are in situ loaded on graphene with AgNO3 as the precursor, PVP as the dispersant, and glucose as the reducing agent, solving the negative effect of grain boundaries and overlap defects. Uniformly dispersed Ag nanoparticles are obtained anchored on or between the multi-layer graphene sheets. The average size of Ag nanoparticles is 56 nm. Finally, the prepared Ag NPs@graphene nanocomposite is used as conductive filler to prepare water-based conductive ink. At the optimal sintering temperature and time (150 °C for 20 min), the square resistance of the conductive patterns printed by screen printing is 21.6 mΩ sq−1, indicating that the conductive ink has great potential applications in printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Byeong-Ung H, Arsalan Z, Quang TT, Long W, Deuk LJ, Choi Y et al (2019) A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction. Npg Asia Mater 11(1). https://doi.org/10.1038/s41427-019-0126-x

  2. Silva ZJ, Valenta CR, Durgin GD (2021) Optically transparent antennas: a survey of transparent microwave conductor performance and applications. Ieee Antennas Propag Mag 63(1):27–39. https://doi.org/10.1109/MAP.2020.2988526

    Article  Google Scholar 

  3. Jung E, Kim C, Kim M, Chae H, Cho JH, Cho SM (2017) Roll-to-roll preparation of silver-nanowire transparent electrode and its application to large-area organic light-emitting diodes. Org Electron 41:190–197. https://doi.org/10.1016/j.orgel.2016.11.003

    Article  CAS  Google Scholar 

  4. Yao S, Cui J, Cui Z, Zhu Y (2017) Soft electrothermal actuators using silver nanowire heaters. Nanoscale 9(11):3797–3805. https://doi.org/10.1039/C6NR09270E

    Article  CAS  Google Scholar 

  5. Aburas M, Soebarto V, Williamson T, Liang R, Ebendorff-Heidepriem H, Wu Y (2019) Thermochromic smart window technologies for building application: a review. Appl Energy 255:113522. https://doi.org/10.1016/j.apenergy.2019.113522

    Article  Google Scholar 

  6. Liu C, Balin I, Magdassi S, Abdulhalim I, Long Y (2015) Vanadium dioxide nanogrid films for high transparency smart architectural window applications. Opt Express 23(3):A124. https://doi.org/10.1364/OE.23.00A124

    Article  CAS  Google Scholar 

  7. Jeon I, Yoon J, Kim U, Lee C, Xiang R, Shawky A et al (2019) High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells. Adv Energy Mater 9(27):1901204. https://doi.org/10.1002/aenm.201901204

    Article  CAS  Google Scholar 

  8. Zhao P, Tang Q, Zhao X, Tong Y, Liu Y (2018) Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors. J Colloid Interface Sci 520:58–63. https://doi.org/10.1016/j.jcis.2018.02.063

    Article  CAS  Google Scholar 

  9. Ning J, Hao L, Jin M, Qiu X, Shen Y, Liang J et al (2017) A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv Mater 29(9). https://doi.org/10.1002/adma.201605028

  10. Teymouri A, Pillai S, Ouyang Z, Hao X, Liu F, Yan C et al (2017) Low-temperature solution processed random silver nanowire as a promising replacement for indium tin oxide. Acs Appl Mater Interfaces 9(39):34093–34100. https://doi.org/10.1021/acsami.7b13085

    Article  CAS  Google Scholar 

  11. Li B, Ye S, Stewart IE, Alvarez S, Wiley BJ (2015) Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett 15(10):6722–6726. https://doi.org/10.1021/acs.nanolett.5b02582

    Article  CAS  Google Scholar 

  12. Rizwan M, Kutty AA, Kgwadi M, Drysdale TD, Sydanheimo L, Ukkonen L et al (2017) Possibilities of fabricating copper-based RFID tags with photonic-sintered inkjet printing and thermal transfer printing. Ieee Antennas Wirel Propag Lett 16:1828–1831. https://doi.org/10.1109/LAWP.2017.2682319

    Article  Google Scholar 

  13. Das Neves MFF, Damasceno JPV, Junior ODL, Zarbin AJG, Roman LS (2021) Conductive ink based on PEDOT nanoparticles dispersed in water without organic solvents, passivant agents or metallic residues. Synth Met 272:116657. https://doi.org/10.1016/j.synthmet.2020.116657

    Article  CAS  Google Scholar 

  14. Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25(5):55201. https://doi.org/10.1088/0957-4484/25/5/055201

    Article  CAS  Google Scholar 

  15. Wu X, Niu F, Zhong A, Han F, Chen Y, Li J et al (2019) Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics. Rsc Adv 9(68):39958–39964. https://doi.org/10.1039/C9RA08118F

    Article  CAS  Google Scholar 

  16. He Y, Wu D, Zhou M, Zheng Y, Wang T, Lu C et al (2021) Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. Acs Appl Mater Interfaces 13(13):15572–15583. https://doi.org/10.1021/acsami.0c22823

    Article  CAS  Google Scholar 

  17. Maurya D, Khaleghian S, Sriramdas R, Kumar P, Kishore RA, Kang MG et al (2020) 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat Commun 11(1):5392. https://doi.org/10.1038/s41467-020-19088-y

    Article  CAS  Google Scholar 

  18. Zhang X, Yan X, Chen J, Zhao J (2014) Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon N Y 69:437–443. https://doi.org/10.1016/j.carbon.2013.12.046

    Article  CAS  Google Scholar 

  19. Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 5(19):2212–2217. https://doi.org/10.1002/smll.200900548

    Article  CAS  Google Scholar 

  20. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y et al (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3(5):339–349. https://doi.org/10.1007/s12274-010-1037-x

    Article  CAS  Google Scholar 

  21. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of ag–graphene-based nanocomposites. Small 5(20):2253–2259. https://doi.org/10.1002/smll.200900726

    Article  CAS  Google Scholar 

  22. Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/ag nanoparticle hybrids. Acs Nano 5(8):6425–6433. https://doi.org/10.1021/nn201606r

    Article  CAS  Google Scholar 

  23. Jasuja K, Berry V (2009) Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. Acs Nano 3(8):2358–2366. https://doi.org/10.1021/nn900504v

    Article  CAS  Google Scholar 

  24. Mastalir Á, Király Z, Patzkó Á, Dékány I, Argentiere L (2008) Synthesis and catalytic application of Pd nanoparticles in graphite oxide. Carbon N Y 46(13):1631–1637. https://doi.org/10.1016/j.carbon.2008.06.054

    Article  CAS  Google Scholar 

  25. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Muelhaupt R (2009) ChemInform Abstract: palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. ChemInform 40(45). https://doi.org/10.1002/chin.200945090

  26. Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9(6):2255–2259. https://doi.org/10.1021/nl900397t

    Article  CAS  Google Scholar 

  27. Zhou K, Zhao Y, Sun X, Yuan Z, Zheng G, Dai K et al (2020) Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70:104546. https://doi.org/10.1016/j.nanoen.2020.104546

    Article  CAS  Google Scholar 

  28. Chen S, Wei Y, Wei S, Lin Y, Liu L (2016) Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. Acs Appl Mater Interfaces 8(38):25563–25570. https://doi.org/10.1021/acsami.6b09188

    Article  CAS  Google Scholar 

  29. Yang W, Wang C, Arrighi V, Vilela F (2017) One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach. Mater Sci Mater Electron 28(11):8218–8230. https://doi.org/10.1007/s10854-017-6533-2

    Article  CAS  Google Scholar 

  30. Hareesh K, Williams JF, Dhole NA, Kodam KM, Bhoraskar VN, Dhole SD (2016) Bio-green synthesis of Ag–GO, Au–GO and Ag–Au–GO nanocomposites usingAzadirachta indica: its application in SERS and cell viability. Mater Res Express 3(7):75010. https://doi.org/10.1088/2053-1591/3/7/075010

    Article  CAS  Google Scholar 

  31. Tien H, Huang Y, Yang S, Wang J, Ma CM (2011) The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon N Y 49(5):1550–1560. https://doi.org/10.1016/j.carbon.2010.12.022

    Article  CAS  Google Scholar 

  32. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  33. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12(8):3925–3930. https://doi.org/10.1021/nl300901a

    Article  CAS  Google Scholar 

  34. Yu SJ, Yin YG, Chao JB, Shen MH, Liu JF (2014) Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+). Environ Sci Technol 48(1):403–411. https://doi.org/10.1021/es404334a

    Article  CAS  Google Scholar 

  35. Tian L, Wang P, Zhao Z, Ji J (2013) Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles. Appl Biochem Biotechnol 171(7):1890–1899. https://doi.org/10.1007/s12010-013-0461-2

    Article  CAS  Google Scholar 

  36. Montazer M, Shamei A, Alimohammadi F (2012) Synthesizing and stabilizing silver nanoparticles on polyamide fabric using silver-ammonia/PVP/UVC. Prog Org Coat 75(4):379–385. https://doi.org/10.1016/j.porgcoat.2012.07.011

    Article  CAS  Google Scholar 

  37. Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flock R et al (2014) PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol 5:1944–1965. https://doi.org/10.3762/bjnano.5.205

    Article  CAS  Google Scholar 

  38. Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y (2011) Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22(42):425601. https://doi.org/10.1088/0957-4484/22/42/425601

    Article  CAS  Google Scholar 

  39. Desai R, Mankad V, Gupta S, Jha P (2012) Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett 4(1):30–34. https://doi.org/10.1166/nnl.2012.1278

    Article  CAS  Google Scholar 

  40. Chen Z, Chang JW, Balasanthiran C, Milner ST, Rioux RM (2019) Anisotropic growth of silver nanoparticles is kinetically controlled by polyvinylpyrrolidone binding. J Am Chem Soc 141(10):4328–4337. https://doi.org/10.1021/jacs.8b11295

    Article  CAS  Google Scholar 

  41. Ruditskiy A, Xia Y (2016) Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: the roles of heterogeneous nucleation and surface capping. J Am Chem Soc 138(9):3161–3167. https://doi.org/10.1021/jacs.5b13163

    Article  CAS  Google Scholar 

  42. Yang TH, Zhou S, Gilroy KD, Figueroa-Cosme L, Lee YH, Wu JM et al (2017) Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proc Natl Acad Sci U S a 114(52):13619–13624. https://doi.org/10.1073/pnas.1713907114

    Article  CAS  Google Scholar 

  43. Xia X, Zeng J, Oetjen LK, Li Q, Xia Y (2012) Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J Am Chem Soc 134(3):1793–1801. https://doi.org/10.1021/ja210047e

    Article  CAS  Google Scholar 

  44. Xu Q, Zhao W, Zhi J, Yin J (2018) Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing. Carbon N Y 135:180–186. https://doi.org/10.1016/j.carbon.2018.03.040

    Article  CAS  Google Scholar 

  45. Sugimoto T (2001) Monodispersed particles. Elsevier, pp 86–117

    Book  Google Scholar 

  46. Vilvamani N, Gupta T, Gupta RD, Awasthi SK (2014) Bottom-up molecular-assembly of Ru( ii )polypyridyl complex-based hybrid nanostructures decorated with silver nanoparticles: effect of Ag nitrate concentration. Rsc Adv 4(38):20024–20030. https://doi.org/10.1039/C4RA01347F

    Article  CAS  Google Scholar 

  47. Hong J, Ding Y, Moon K, Wong CP (2013) Enhanced diffusion of silver atoms on the surface of nanoparticles at low temperatures. J Electron Packag 135(1). https://doi.org/10.1115/1.4023910

  48. Qi WH, Wang MP (2002) Size effect on the cohesive energy of nanoparticle. J Mater Sci Lett 21(22):1743–1745. https://doi.org/10.1023/a:1020904317133

    Article  CAS  Google Scholar 

  49. Jiang H, Moon K, Dong H, Hua F, Wong CP (2006) Size-dependent melting properties of tin nanoparticles. Chem Phys Lett 429(4-6):492-496. https://doi.org/10.1016/j.cplett.2006.08.027

  50. Tang BL, Chen GX, Chen QF, Tai JL (2011) Research on preparation of nano-silver by orthogonal test. Mater Sci Forum 694:142–145. https://doi.org/10.4028/www.scientific.net/MSF.694.142

    Article  CAS  Google Scholar 

  51. Liguo Y, Yanhua Z (2010) Preparation of nano-silver flake by chemical reduction method. Rare Metal Mat Eng 39(3):401–404. https://doi.org/10.1016/S1875-5372(10)60088-4

    Article  Google Scholar 

  52. Lee G (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84(2-3):197–204. https://doi.org/10.1016/j.matchemphys.2003.11.024

    Article  CAS  Google Scholar 

  53. Yonghui S, Gongying L, Qiuli Z, Xuegang L, Chunyang W (2007) Research on preparation of spherical nanosized silvery powder. Rare Metal Mat Eng 36(4):709–712. https://doi.org/10.3321/j.issn:1002-185X.2007.04.033

    Article  Google Scholar 

  54. Kang JS, Ryu J, Kim HS, Hahn HT (2011) Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J Electron Mater 40(11):2268–2277. https://doi.org/10.1007/s11664-011-1711-0

    Article  CAS  Google Scholar 

  55. Dharmadasa R, Jha M, Amos DA, Druffel T (2013) Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. Acs Appl Mater Interfaces 5(24):13227–13234. https://doi.org/10.1021/am404226e

    Article  CAS  Google Scholar 

  56. Wünscher S, Abbel R, Perelaer J, Schubert US (2014) Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J Mater Chem C Mater 2(48):10232–10261. https://doi.org/10.1039/C4TC01820F

    Article  CAS  Google Scholar 

  57. Vo DQ, Shin EW, Kim JS, Kim S (2010) Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange. Langmuir 26(22):17435–17443. https://doi.org/10.1021/la102627m

    Article  CAS  Google Scholar 

  58. Li W, Yan J, Wang C, Zhang N, Choy TH, Liu S et al (2022) Molecule bridged graphene/Ag for highly conductive ink. Sci China Mater 65(10):2771–2778. https://doi.org/10.1007/s40843-022-2064-8

    Article  CAS  Google Scholar 

  59. Zhao J, Song M, Wen C, Majee S, Yang D, Wu B et al (2018) Microstructure-tunable highly conductive graphene-metal composites achieved by inkjet printing and low temperature annealing. J Micromech Microeng 28(3):35006. https://doi.org/10.1088/1361-6439/aaa450

    Article  CAS  Google Scholar 

  60. Wang F, Zhu H, He H (2016) Low temperature sintering of Ag nanoparticles/graphene composites for paper based writing electronics. J Phys D Appl Phys 49(41):415501. https://doi.org/10.1088/0022-3727/49/41/415501

    Article  CAS  Google Scholar 

  61. Liu P, He W, Lu A (2019) Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene. J Cent South Univ 26(11):2953–2960. https://doi.org/10.1007/s11771-019-4227-z

    Article  CAS  Google Scholar 

  62. Liu P, Ma J, Deng S, Zeng K, Deng D, Xie W et al (2016) Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures. Nanotechnology 27(38):385603. https://doi.org/10.1088/0957-4484/27/38/385603

    Article  CAS  Google Scholar 

  63. Zou Q, Cao C, Zhu H, Hou C (2019) In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y (eds) (2019-1-1). Preparation of low temperature sintered graphene/silver nanocomposite-based conductive ink. Springer Singapore, pp 751–758

    Google Scholar 

  64. Jiang H, Liang S, Wei C, Ke C (2022) Phase field modelling of the electromigration behaviour in sintered silver. J Mater Res 37(14):2322–2334. https://doi.org/10.1557/s43578-022-00635-w

    Article  CAS  Google Scholar 

  65. Giasafaki D, Mitzithra C, Belessi V, Filippakopoulou T, Koutsioukis A, Georgakilas V et al (2022) Graphene-based composites with silver nanowires for electronic applications. Nanomaterials (Basel) 12(19). https://doi.org/10.3390/nano12193443

  66. Yang W, Wang C, Arrighi V, Vilela F (2017) One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach. J Mater Sci Mater Electron 28(11):8218–8230. https://doi.org/10.1007/s10854-017-6533-2

    Article  CAS  Google Scholar 

  67. Li L, Guo Y, Zhang X, Song Y (2014) Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J Mater Chem. A, Mater Energy Sustain 2(44):19095–19101. https://doi.org/10.1039/C4TA04156A

    Article  CAS  Google Scholar 

  68. Karim N, Afroj S, Tan S, Novoselov KS, Yeates SG (2019) All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci Rep 9(1):8035. https://doi.org/10.1038/s41598-019-44420-y

    Article  CAS  Google Scholar 

  69. Deng D, Feng S, Shi M, Huang C (2017) In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing. J Mater Sci Mater Electron 28(20):15411–15417. https://doi.org/10.1007/s10854-017-7427-z

    Article  CAS  Google Scholar 

Download references

Data and code availability

Not applicable

Funding

The National Natural Science Foundation of China (21978043) and the National Key R&D Program of China (2020YFA0710202) support this research. The authors of this paper appreciate the funding organization.

Author information

Authors and Affiliations

Authors

Contributions

Lei Zhu led all the experimental work and wrote the paper. Qin-Qin Xu and Jian-Zhong Yin supervised the project. Jin Guo, Shuo-Lei Niu, and Bao-Ning Lu participated in the experiments. All the authors participated in the discussion and preparation of the manuscript.

Corresponding author

Correspondence to Qin-Qin Xu.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Xu, QQ., Guo, J. et al. In situ growth of Ag nanoparticles on pristine graphene and their applications in conductive ink. J Nanopart Res 25, 98 (2023). https://doi.org/10.1007/s11051-023-05751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05751-0

Keywords

Navigation