Skip to main content
Log in

Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: a new magnetic material for removing iron and manganese ions from water

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (17.07±1.89 nm) were synthesized from mining sludge (Mag-NPR) by co-precipitation with ammonium hydroxide. Mag-NPR was used in bentonite coating (B-Mag) for removing iron (Fe) and manganese (Mn) ions from water. Mag-NPR and B-Mag were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen physisorption, and scanning electron microscopy. Structural similarity of both materials was observed compared to conventional standards from literature. The maximum sorption capacity in B-Mag was 1.43\(\times \) (Fe) and 3.30\(\times \) (Mn) higher when compared to bentonite, indicating that the synthesized material is effective in removing Fe(II) and Mn(II). The mobilization factors of Fe(II) and Mn(II) were 96.6% and 24.3% for B-Mag and 36.2% and 26.9% for bentonite. Competitive sorption showed maximum Fe(III) and Mn(II) sorption capacities exceeding 4.5 and 2.0 times as much as in the single mode. The new magnetic properties make the B-Mag reusable and easily separated from the aqueous solution, removing color, smell, and turbidity while removing Fe and Mn ions, with remarkable technological potential.

Graphical abstract

Iron mining sludge accidentally spilled into the Rio Doce basin - MInas Gerais state - Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The main numerical results in this section can be generated from the MatLab script available at https://data.mendeley.com/datasets/sv5683g5xc/1; Santos, Maria; Lima, Andre; Quirino, Juliana; Cavina, Rafael; Onishi, Bruno (2022), “Employment of magnetized bentonite by Fe\(_3\)O\(_4\) nanoparticles synthesized from mining waste to remove metals from water”, Mendeley Data, V1, https://doi.org/10.17632/sv5683g5xc.1.

References

  1. Silva C, Coutinho A, Oliveira J, Teodoro P, Lima M, Shakir M, Gois G, Johann J (2018) Analysis of the impact on vegetation caused by abrupt deforestation via orbital sensor in the environmental disaster of Mariana, Brazil. Land Use Policy 76:10–20. https://doi.org/10.1016/j.landusepol.2018.04.019

  2. Government-Brazil MG (2016) https://www.mg.gov.br//. Accessed Mar 2022

  3. Frachini E, Ferreira C, Kroetz B, Urbano A, Abrao T, Santos M (2021) Modeling the kinetics of potentially toxic elements desorption in sediment affected by a dam breakdown disaster in Doce River - Brazil. Chemosphere 283:131–157. https://doi.org/10.1016/j.chemosphere.2021.131157

    Article  CAS  Google Scholar 

  4. Giraldo L, Erto A, Moreno-Pirajan J (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization. Adsorption 19:465–474. https://doi.org/10.1007/s10450-012-9468-1

    Article  CAS  Google Scholar 

  5. Chen Z, Jin X, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci 363:601–607. https://doi.org/10.1016/j.jcis.2011.07.057

    Article  CAS  Google Scholar 

  6. Silva D, Toma S, Melo F, Carvalho l, Magalhaes A, Sabadini E, Santos A, Araki K, Toma H, (2016) Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents. J Magn Magn Mater 397:28–32. https://doi.org/10.1016/j.jmmm.2015.08.092

  7. Iyengar S, Joy M, Ghosh C, Dey S, Kotnala R, Ghosh S (2014) Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through aqueous route. RSC Adv 4:64919–64929. https://doi.org/10.1039/C4RA11283K

    Article  CAS  Google Scholar 

  8. Maksoud M, Elgarahy A, Farrell C, Al-Muhtaseb A, Rooney D, Osman A (2019) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096–133. https://doi.org/10.1016/j.ccr.2019.213096

    Article  CAS  Google Scholar 

  9. Mohammed A, Israa S (2018) Bentonite coated with magnetite Fe\(_{3}\)O\(_{4}\) nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ Technol Innov 10:162–174. https://doi.org/10.1016/j.eti.2018.02.005

  10. Mohammed A, Brouers F, Sadi S, Al-Musawi T (2018) Role of Fe\(_{3}\)O\(_{4}\) magnetite nanoparticles used to coat bentonite in zinc(II) ions sequestration. Environ Nanotechnol Monit Manag 10:17–27. https://doi.org/10.1016/j.enmm.2018.04.004

  11. Lima A (1996) Problems of sanitary engineering. UFPE, Pernambuco-Brazil

    Google Scholar 

  12. Hernandez E, Discalzi G, Dassi P, Jarre L (2002) Manganese intoxication: The cause of an inexplicable epileptic syndrome in a 3 year old child. NeuroToxicology 24:633–639. https://doi.org/10.1016/S0161-813X(03)00026-3

    Article  CAS  Google Scholar 

  13. Gonzalez R, Alvarez A, Moreno C (2007) Manganese and epilepsy: A systematic review of the literature. Brain Res Rev 53:332–6. https://doi.org/10.1016/j.brainresrev.2006.10.002

    Article  CAS  Google Scholar 

  14. CONAMA (2005) National environmental council 357. http://conama.mma.gov.br//. Accessed Mar 2022

  15. Lin W, Liu X, Ding A, Ngo H, Zhang R, Nan J, Ma J, Li G (2022) Advanced oxidation processes (AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal: A critical review. J Water Process Eng 45:102468–102484. https://doi.org/10.1016/j.jwpe.2021.102468

    Article  Google Scholar 

  16. Fortune WB, Mellon MG (1938) Determination of iron with o-phenanthroline: A spectrophotometric study. Ind Eng Chem, Anal Ed 10:60–64. https://doi.org/10.1021/ac50118a004

    Article  CAS  Google Scholar 

  17. Yih-Wen D, Santhanam K, Allen J (1981) Solution redox couples for electrochemical energy storage: I. Iron (III)-iron (II) complexes with o-phenanthroline and related ligands. J Electrochem Soc 128:1460–1467. https://doi.org/10.1149/1.2127663

    Article  Google Scholar 

  18. Shen L, Laibinis E, Hatton T (1999) Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 15:447–453. https://doi.org/10.1021/la9807661

    Article  CAS  Google Scholar 

  19. Zuin A, Cousseau T, Sinatora A, Toma S, Araki S, Toma H (2017) Lipophilic magnetite nanoparticles coated with stearic acid: A potential agent for friction and wear reduction. Tribol Int 112:10–19. https://doi.org/10.1016/j.triboint.2017.03.028

    Article  CAS  Google Scholar 

  20. Shahwan T, Uzum C, Eroglu AE, Lieberwirth I (2010) Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl Clay Sci 47:257–262. https://doi.org/10.1016/j.clay.2009.10.019

    Article  CAS  Google Scholar 

  21. Chen T, Wang Q, Lyu J, Bai P, Guo X (2020) Boron removal and reclamation by magnetic magnetite Fe\(_{3}\)O\(_{4}\) nanoparticle: An adsorption and isotopic separation study. Sep Purif Technol 231. https://doi.org/10.1016/j.seppur.2019.115930

  22. Thommes M, Kaneko K, Neimark A, Olivier J, Reinoso F, Rouquerol J, Sing K (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  23. Unesp-Brazil (2022) https://www.iq.unesp.br/. Accessed Mar 2022

  24. EMBRAPA (2011) Manual of Soil Analysis Methods. Brazilian Agricultural Research Corporation, Rua Jardim Botanico, 1024 Rio de Janeiro, RJ, 2nd edn

  25. Walkley A, Black I (1934) An examination of the DEGTJAREFF method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  26. Tschapek M, Tcheichvilit L, Wasowski C (1974) The point of zero charge (pzc) of kaolinite and SiO\(_{2}\)+A1\(_{2}\)O\(_{3}\) mixtures. Clay Miner 10:219–229. https://doi.org/10.1180/claymin.1974.010.4.01

  27. Cheng P, Schachman H (1955) Studies on the validity of the Einstein viscosity law and stokes law of sedimentation. J Polym Sci 16:19–30. https://doi.org/10.1002/pol.1955.120168102

    Article  CAS  Google Scholar 

  28. Kumar L, Kumar P (2013) Cation distribution by rietveld technique and magnetocrystalline anisotropy of zn substitutednanocrystalline cobalt ferrite. J Alloys Compd 551:72–81. https://doi.org/10.1016/j.jallcom.2012.10.009

    Article  CAS  Google Scholar 

  29. Omer NH (2019) Water quality parameters. In: Summers K (ed) Water Quality, IntechOpen, Rijeka, chap 1. https://doi.org/10.5772/intechopen.89657

  30. APHA (2005) Standard Methods for the examination of water and waste water, 21st edn. American Public Health Association, Washington

    Google Scholar 

  31. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd edn. Blackwell Science Oxford. https://doi.org/10.1351/goldbook

  32. Santos M, Lima AA, Quirino J, Cavina R, Onishi B (2022) Employment of magnetized bentonite by Fe\(_3\)O\(_4\) nanoparticles synthesized from mining waste to remove metals from water. Mendeley data- https://data.mendeley.com/datasets/sv5683g5xc/1

  33. Do D (1998) Adsorption analysis - Equilibria and kinetics, vol 2. Imperial College Press, London

    Book  Google Scholar 

  34. Essington M (2015) Soil and water chemistry, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  35. Constantino L, Quirino J, Abrao T, Parreira P, Urbano A, Santos M (2018) Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions. J Haz Mat 344:649–656. https://doi.org/10.1016/j.jhazmat.2017.11.016

    Article  CAS  Google Scholar 

  36. Galunin E, Ferreti J, Zapelline I, Vieira I, Tarley C, Abrao T, Santos M (2014) Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment. J Haz Mat 265:280–287. https://doi.org/10.1016/j.jhazmat.2013.11.010

    Article  CAS  Google Scholar 

  37. Galunin E, Alba MD, Santos MJ, Vidal M (2010) Lanthanide sorption on smectitic clays in presence of cement leachates. Geochim Cosmochim Acta 74:862–875. https://doi.org/10.1016/j.gca.2009.11.003

    Article  CAS  Google Scholar 

  38. Lima A, Onishi S, Watanabe L, Santos M (2022) Mobility of organotin pesticides: azocyclotin and cyhexatin in clayey and sandy soils from the Northern Paraná state–Brazil. Environ Earth Sci 81:236–244. https://doi.org/10.1007/s12665-022-10351-7

    Article  CAS  Google Scholar 

  39. Langmuir L (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 11:221–2295. https://doi.org/10.1021/ja02268a002

    Article  Google Scholar 

  40. Blahovec J, Yanniotis S (2009) Modified classification of sorption isotherms. J Food Eng 91:72–77. https://doi.org/10.1016/j.jfoodeng.2008.08.007

    Article  Google Scholar 

  41. SABESP (2001) Technical Standard SABESP NTS 010 Determination of total iron: 1.10 phenanthroline Method. São Paulo, Brazil

  42. Miessler G, Tarr DA (2004) Inorganic chemistry, 2nd edn. Pearson Education, Upper Saddle River

    Google Scholar 

  43. Daou I, Lecomte-Nana G, Tessier-Doyen N, Peyratout C, Gonon M, Guinebretiere R (2020) Probing the dehydroxylation of kaolinite and halloysite by in situ high temperature X-ray diffraction. Minerals 10:480. https://doi.org/10.3390/min10050480

    Article  Google Scholar 

  44. Lu Y, Dong W, Wang W, Ding J, Wang Q, Hui A, Wang A (2018) Optimal synthesis of environment-friendly iron red pigment from natural nanostructured clay minerals. J Nanomater 8:925. https://doi.org/10.3390/nano8110925

    Article  CAS  Google Scholar 

  45. Olga E, Andrey S, Ekaterina A, Maxim I, Vladimir V (2020) Room-temperature fabrication of magnetite-boehmite sol-gel composites for heavy metal ions removal. Arab J Chem 13:1933–1944. https://doi.org/10.1016/J.ARABJC.2018.02.011

    Article  Google Scholar 

  46. Chen J, Kelong H, Suqin L (2009) Hydrothermal preparation of octadecahedron Fe\(_{3}\)O\(_{4}\) thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5. https://doi.org/10.1016/j.electacta.2009.04.017

  47. Wu X, Zhu A, Nan Z (2017) Preparation of hollow Fe\(_{3}\)O\(_{4}\) spheres through a facile method and their applications. Funct Mater Lett 10:1750075. https://doi.org/10.1142/S1793604717500758

  48. Wibowo A, Sutanto H, Priyono P, Syahida AN, Irianti F, Alkian I (2021) The effect of 6 hours stirring time on natural iron sand base on magnetics nanoparticle by sonification. J Phys Conf Ser 1943:1–7. https://doi.org/10.1088/1742-6596/1943/1/012015

    Article  CAS  Google Scholar 

  49. Syahida AN, Sutanto H, Alkian I, Irianti F, Wibowo A, Priyono P (2021) Synthesized and characterization nanosized synthesis Fe\(_{3}\)O\(_{4}\) powder from natural iron sand. J Phys Conf Ser 1943:1–6. https://doi.org/10.1088/1742-6596/1943/1/012013

  50. Friak MA, Scheffler M (2007) Ab initio study of the half-metal to metal transition in strained magnetite. New J Phys 9:1–15. https://doi.org/10.1088/1367-2630/9/1/005

    Article  CAS  Google Scholar 

  51. Bandpi A, Al-Musawi T, Ghahramani E, Zarrabi M, Mohebi S, Vahed S (2016) Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe\(_{3}\)O\(_{4}\) nanoparticles. J Mol Liq 218:615–624. https://doi.org/10.1016/j.molliq.2016.02.092

  52. Silva R, Guerra D (2013) Use of natural and modified kaolinite/ilite as adsorbent for removal methylene blue dye from aqueous solution. J Chil Chem Soc 58:1517–1519. https://doi.org/10.4067/S0717-97072013000100003

    Article  Google Scholar 

  53. Binitha N, Sugunan S (2006) Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous Mesoporous Mater 93:82–89. https://doi.org/10.1016/J.MICROMESO.2006.02.005

    Article  CAS  Google Scholar 

  54. Zhirong L, Uddin A, Zhanxue S (2011) FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim Acta A Mol Biomol Spectrosc 79(5):1013–1016. https://doi.org/10.1016/j.saa.2011.04.013

    Article  CAS  Google Scholar 

  55. Lou Z, Zhou Z, Zhang W, Zhang W, Hu X, Liu P, Zhang H (2015) Magnetized bentonite by Fe\(_{3}\)O\(_{4}\) nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: Synthesis, characterization, mechanism, kinetics and regeneration. J Taiwan Inst Chem Eng 49:199–205. https://doi.org/10.1016/j.jtice.2014.11.007

  56. Ouyang Y, Liu Y, Zhu R, Ge F, Xu T, Luo Z, Liang L (2015) Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control. Miner Eng 72:57–64. https://doi.org/10.1016/j.mineng.2014.12.020

    Article  CAS  Google Scholar 

  57. Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A Physicochem Eng Asp 219–226. https://doi.org/10.1016/S0927-7757(02)00305-9

  58. Yamamura M, Camilo R, Sampaio L, Macedo M, Nakamura M, Toma H (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217. https://doi.org/10.1016/j.jmmm.2004.01.094

  59. Meurer E (2000) Fundamentals of Soil Chemistry, 2nd edn. Porto Alegre Genesis, Porto Alegre

    Google Scholar 

  60. Sposito G (1984) The Surface Chemistry of Soils. Oxford University Press, New York

    Google Scholar 

  61. Collins T (2007) ImageJ for microscopy. Biotechniques 43:S25–S30. https://doi.org/10.2144/000112517

    Article  Google Scholar 

  62. Shatooti S, Mozaffari M, Reiter G, Zahn D, Dutz S (2021) An investigation on the heat dissipation in zn-substituted magnetite nanoparticles, coated with citric acid and pluronic f127 for hyperthermia application. Physica B Condens 625:413468. https://doi.org/10.1016/j.physb.2021.413468

    Article  CAS  Google Scholar 

  63. Yan L, Li S, Yu H, Shan R, Du B, Liu T (2016) Facile solvothermal synthesis of Fe\(_{3}\)O\(_{4}\)/bentonite for efficient removal of heavy metals from aqueous solution. Powder Technol 301:632–640. https://doi.org/10.1016/j.powtec.2016.06.051

    Article  CAS  Google Scholar 

  64. El-Maghrabi H, Ali H, Zahran F, Betiha M (2021) Functionalized magnetic bentonite-iron oxide nanocomposite and its application to decrease scale formation in tubing of oil/gas production. Appl Surf Sci 4:100058. https://doi.org/10.1016/j.apsadv.2021.100058

    Article  Google Scholar 

  65. Klik B, Holatko J, Jaskulska I, Gusiatin M, Hammerschmiedt T (2022) Bentonite as a functional material enhancing phytostabilization of post-industrial contaminated soils with heavy metals. Mater 15:8331. https://doi.org/10.3390/ma15238331

    Article  CAS  Google Scholar 

  66. Gumede S, Musonge P (2022) Characterisation of Mg-Al hydrotalcite and surfactant-modified bentonite nano clays for the treatment of acid mine drainage. Sustainability 14:9501. https://doi.org/10.3390/su14159501

    Article  CAS  Google Scholar 

  67. Siguin D, Ferreira S, Froufe L, Garcia F (1994) Smectites: The relationship between their properties and isomorphic substitution. J Mater Sci 29:4379–4384. https://doi.org/10.1007/BF00414225

    Article  CAS  Google Scholar 

  68. Conway B, Ayranc E (1999) Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. J Solut Chem 28:163–192. https://doi.org/10.1023/A:1021702230117

    Article  CAS  Google Scholar 

  69. Ko D, Cheung C, Choy K, Porter J, McKay G (2004) Sorption equilibria of metal ions on bone char. Chemosphere 54:273–281. https://doi.org/10.1016/j.chemosphere.2003.08.004

  70. Nightingale ER (1959) Phenomenological theory of ion solvation. effective radii of hydrated ions. J Phys Chem 63:1381–1387. https://doi.org/10.1021/j150579a011

    Article  CAS  Google Scholar 

  71. Lee D, Moon H (2001) Adsorption equilibrium of heavy metals on natural zeolites. Korean J Chem Eng 18:247–256. https://doi.org/10.1007/BF02698467

    Article  CAS  Google Scholar 

  72. Goldani E, Moro C, Maia S (2013) A study employing differents clays for Fe and Mn removal in the treatment of acid mine drainage. Wat Air Soil Poll 224. https://doi.org/10.1007/s11270-012-1401-4

  73. Flieger J, Kawka J, Płazinski W, Panek R, Madej J (2020) Sorption of heavy metal ions of chromium, manganese, selenium, nickel, cobalt, iron from aqueous acidic solutions in batch and dynamic conditions on natural and synthetic aluminosilicate sorbents. Materials 13:1–18. https://doi.org/10.3390/ma13225271

    Article  CAS  Google Scholar 

  74. Alexander J, Zaini M, Abdulsalam S, El-Nafaty U, Aroke U (2019) Isotherm studies of lead(II), manganese(II), and cadmium(II) adsorption by nigerian bentonite clay in single and multimetal solutions. Part Sci Technol 37:399–409. https://doi.org/10.1080/02726351.2017.1404514

    Article  CAS  Google Scholar 

  75. Osman A, Elgarahy A, Mehta N, Al-Muhtaseb A, Al-Fatesh A, Rooney D (2022) Facile synthesis and life cycle assessment of highly active magnetic sorbent composite derived from mixed plastic and biomass waste for water remediation. ACS Sustain Chem Eng 12433–12447. https://doi.org/10.1021/acssuschemeng.2c04095

Download references

Acknowledgements

The authors would like to thank Capes (Coordination for the Improvement of Higher Education Personnel) for fellowships. The Spectroscopy laboratory (LABESPEC–Londrina, Brazil), the laboratory of X-Ray analysis (LARX–Londrina, Brazil), the laboratory of advanced microscopy (LMA–Araraquara, Brazil), the LCE (Structural Characterization Laboratory - UFSCar–São Carlos, Brazil) for TEM analyses, and Dr Alexandre Da Cas Viegas ( IM-LAM, UFRGS-Porto Alegre, Brazil) for VSM analysis.

Funding

Grants:88882.460421/2019-01 and 88882.448497/2019-01 from Capes (Coordination of Superior Level Staff Improvement) for fellowships.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission: (i) made substantial contributions to the conception or design of the work; the acquisition, analysis, and interpretation of data, (ii) drafted the work or revised it critically for important intellectual content, (iii) approved the version to be published, and (iv) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Maria J. Santos.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 833 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A.A.A., Quirino, J.N., Cavina, R. et al. Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: a new magnetic material for removing iron and manganese ions from water. J Nanopart Res 25, 155 (2023). https://doi.org/10.1007/s11051-023-05745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05745-y

Keywords

Navigation