Skip to main content
Log in

On surface pre-melting of metallic nanoparticles: molecular dynamics study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Employing the isothermal molecular dynamics and the embedded atom method, we simulated melting of metallic nanoparticles (Au, Ag, Cu, Ni, and Pb ones). In more detail, the results for Au and Ag nanoparticles are presented and discussed. At first, we analyzed the behavior of the temperature dependences for the potential (cohesive) term into the specific (per atom) internal energy and for the degree of crystallinity in the course of heating nanoparticles. We have found that the results obtained for nanoparticles of about 4 and 8 nm in size (containing 2093 and 20,113 atoms, respectively) demonstrate the continuous melting. Employing the dependence of the specific potential energy on the distance to the nanoparticle center of mass and the common neighbor analysis, we showed that the continuous melting occurs via the surface pre-melting mechanism. Then, we evaluated the self-diffusion coefficient in the surface disordered layers of Au and Ag nanoparticles and found that our results agree in order of magnitude (10−9 m2/s) with the values of the self-diffusion coefficient for the bulk Au and Ag melts at the corresponding bulk melting temperatures. Finally, combining in our molecular dynamics experiments continuous heating Au nanoparticles with annealing them at some constant selected temperatures, we have shown that the liquid nucleation and growth mechanism should be most adequate to the melting behavior of metallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The main simulation results were obtained employing open access program LAMMPS. The authors are not able now to share their own additional software for processing MD results (evaluation of the self-diffusion coefficient) freely as it is a proprietary of their organization (Tver State University). However, after the paper is published, the authors will be ready to provide the trial software to interested readers and to discuss with them our approach for determination of the atomic mobility in MD experiments. In addition, it is proposed to make the toolkit available on the GitHub website after the developed software is registered.

References

  1. Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz). Z Phys Chem 65:545–548. https://doi.org/10.1515/zpch-1909-6532

    Article  CAS  Google Scholar 

  2. Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Japan 9:359–363. https://doi.org/10.1143/jpsj.9.359

    Article  Google Scholar 

  3. Samsonov VM, Vasilyev SA, Nebyvalova KK, Talyzin IV, Sdobnyakov NY, Sokolov DN, Alymov MI (2020) Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters. J Nanopart Res 22:247. https://doi.org/10.1007/s11051-020-04923-6

    Article  CAS  Google Scholar 

  4. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2297. https://doi.org/10.1103/PhysRevA.13.2287

    Article  CAS  Google Scholar 

  5. Castro T, Reifenberger R (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42:8548–8556. https://doi.org/10.1103/physrevb.42.8548

    Article  CAS  Google Scholar 

  6. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317. https://doi.org/10.1021/ja017281a

    Article  CAS  Google Scholar 

  7. Duan H, Xue Y, Cui Z, Fu Q, Chen X, Zhang R (2018) Influence of size on melting thermodynamics of nanoparticles: mechanism, factors, range, and degree. Part Part Sys Char 35:1800156. https://doi.org/10.1002/ppsc.201800156

    Article  CAS  Google Scholar 

  8. Foster DM, Pavloudis T, Kioseoglou J, Palmer RE (2019) Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nature Com 10:2583. https://doi.org/10.1038/s41467-019-10713-z

    Article  CAS  Google Scholar 

  9. Delgado-Callico L, Rossi K, Pinto-Miles R, Salzbrenner P, Baletto F (2021) A universal signature in the melting of metallic nanoparticles. Nanoscale 13:1172. https://doi.org/10.1039/d0nr06850k

    Article  CAS  Google Scholar 

  10. Zeni C, Rossi K, Pavloudis T, Kioseoglou J, de Gironcoli S, Palmer R, Baletto F (2021) Data-driven simulation and characterisation of gold nanoparticle melting. Nature Com 12:6056. https://doi.org/10.1038/s41467-021-26199-7

    Article  CAS  Google Scholar 

  11. Samsonov VM, Talyzin IV, Puytov VV, Vasilyev SA, Romanov AA, Alymov MI (2022) When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: molecular dynamics study. J Chem Phys 156:214302. https://doi.org/10.1063/5.0075748

    Article  CAS  Google Scholar 

  12. Nanda KK (2009) Size-dependent melting of nanoparticles: hundred years of thermodynamic model. Indian Acad Sci 72:617–628. https://doi.org/10.1007/s12043-009-0055-2

    Article  CAS  Google Scholar 

  13. Peters KF, Cohen JВ, Chung YW (1998) Melting of Pb nanocrystals. Phys Rev B 57:13430–13438. https://doi.org/10.1103/PhysRevB.57.13430

    Article  CAS  Google Scholar 

  14. Kofman R, Cheyssac P, Lereach Y, Stella A (1999) Melting of clusters approaching 0D. Eur Phys J D 9:441–444. https://doi.org/10.1007/s100530050475

    Article  CAS  Google Scholar 

  15. Zhao SJ, Wang SQ, Cheng DY, Ye HQ (2001) Three distinctive melting mechanisms in isolated nanoparticles. J Phys Chem B 105:12857–12860. https://doi.org/10.1021/jp012638i

    Article  CAS  Google Scholar 

  16. Alarifi HA, Atiş M, Özdoğan C, Hu A, Yavuz M, Zhou Y (2013) Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J Phys Chem C 117:12289–12298. https://doi.org/10.1021/jp311541c

    Article  CAS  Google Scholar 

  17. Foster DM, Ferrando R, Palmer RE (2018) Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters. Nature Com 9:1323. https://doi.org/10.1038/s41467-018-03794-9

    Article  CAS  Google Scholar 

  18. Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, von Issendorff B (2005) Melting of sodium clusters: where do the magic numbers come from? Phys Rev Let 94:035701. https://doi.org/10.1103/physrevlett.94.035701

    Article  Google Scholar 

  19. Dash JG (1989) Surface melting. Contemp Phys 30:89–100. https://doi.org/10.1080/00107518908225509

    Article  CAS  Google Scholar 

  20. Dash JG (1999) History of the search for continuous melting. Rev Mod Phys 71:1737–1743. https://doi.org/10.1103/revmodphys.71.1737

    Article  CAS  Google Scholar 

  21. Reiss H, Wilson IB (1948) The effect of surface on melting point. J Col Sci 3:551–561. https://doi.org/10.1016/s0095-8522(48)90048-8

    Article  CAS  Google Scholar 

  22. Lee C, Hahn JW (2016) Calculating the threshold energy of the pulsed laser sintering of silver and copper nanoparticles. J Opt Soc Korea 20:601–606. https://doi.org/10.3807/JOSK.2016.20.5.60

    Article  CAS  Google Scholar 

  23. Hanszen KJ (1960) Theoretische Untersuchungen uber den Schmelzpunkt kleiner Kugelchen. Z Physik 157:523–553. https://doi.org/10.1007/bf01340711

    Article  CAS  Google Scholar 

  24. Wronski CRW (1967) The size dependence of the melting point of small particles of tin. Brit J Appl Phys 18:1731–1737. https://doi.org/10.1088/0508-3443/18/12/308

    Article  CAS  Google Scholar 

  25. Couchman P, Jesser W (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483. https://doi.org/10.1038/269481a0

    Article  CAS  Google Scholar 

  26. Skripov VP, Koverda VP, Skokov VN (1981) Size effect on melting of small particles. Phys Status Solidi A 66:109–118. https://doi.org/10.1002/pssa.2210660111

    Article  CAS  Google Scholar 

  27. Reiss H, Mirabel P, Whetten RL (1988) Capillarity theory for the “coexistence” of liquid and solid clusters. J Phys Chem 92:7241–7246. https://doi.org/10.1021/j100337a016

    Article  CAS  Google Scholar 

  28. Vanfleet RR, Mochel JM (1995) Thermodynamics of melting and freezing in small particles. Surf Sci 341:40–50. https://doi.org/10.1016/0039-6028(95)00728-8

    Article  CAS  Google Scholar 

  29. Hendy SC (2007) A thermodynamic model for the melting of supported metal nanoparticles. Nanotech 18:175703. https://doi.org/10.1088/0957-4484/18/17/175703

    Article  CAS  Google Scholar 

  30. Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Let, 63:1525-1527. https://doi.org/10.1016/j.matlet.2009.04.009

  31. Thompson AP, Aktulga HM, Berger R et al (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  32. Allen MP, Tildesley DJ (1991) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  33. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  34. Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the embedded atom method. J Mater Res 4:102–112. https://doi.org/10.1557/JMR.1989.0102

    Article  CAS  Google Scholar 

  35. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:14411. https://doi.org/10.1103/PhysRevB.69.144113

    Article  CAS  Google Scholar 

  36. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991. https://doi.org/10.1103/physrevb.33.7983

    Article  CAS  Google Scholar 

  37. Qi Y, Çağin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394. https://doi.org/10.1063/1.1373664

    Article  CAS  Google Scholar 

  38. Samsonov VM, Kharechkin SS, Gafner SL, Redel LV, Gafner YY (2009) Molecular dynamics study of the melting and crystallization of nanoparticles. Crystallogr Rep 54:526–531. https://doi.org/10.1134/S1063774509030250

    Article  CAS  Google Scholar 

  39. Samsonov VM, Bembel AG, Shakulo OV, Vasilyev SA (2014) Crystallogr Rep 59:580–585. https://doi.org/10.1134/S1063774514040166

    Article  CAS  Google Scholar 

  40. Gafner SL, Redel LV, Goloven Ko ZV, Gafner YY, Samsonov VM, Kharechkin SS (2009) Structural transitions in small nickel clusters. JETP Let 89:364–369. https://doi.org/10.1134/s0021364009070121

    Article  CAS  Google Scholar 

  41. Samsonov VM, Bembel AG, Kartoshkin AY, Vasilyev SA, Talyzin IV (2018) Molecular dynamics and thermodynamic simulations of segregation phenomena in binary metal nanoparticles. J Therm Anal Calorim 133:1207–1217. https://doi.org/10.1007/s10973-018-7245-4

    Article  CAS  Google Scholar 

  42. Puytov VV, Romanov AA, Talyzin IV, Samsonov VM (2022) Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation. Rus Chem Bull 71:686–693. https://doi.org/10.1007/s11172-022-3466-6

    Article  CAS  Google Scholar 

  43. Stukowski A, Albe K (2010) Dislocation detection algorithm for atomistic simulations. Model Simul Mater Sci Eng 18:025016. https://doi.org/10.1088/0965-0393/18/2/025016

    Article  CAS  Google Scholar 

  44. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:045021. https://doi.org/10.1088/0965-0393/20/4/045021

    Article  CAS  Google Scholar 

  45. Polak W (2022) Efficiency in identification of internal structure in simulated monoatomic clusters: comparison between common neighbor analysis and coordination polyhedron method. Comp Mater Sci 201:11088. https://doi.org/10.1016/j.commatsci.2021.110882

    Article  CAS  Google Scholar 

  46. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  47. Kuntova Z, Rossi G, Ferrando R (2008) Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431. https://doi.org/10.1103/PhysRevB.77.205431

    Article  CAS  Google Scholar 

  48. Gafner SL, Redel LV, Gafner YY, Samsonov VM (2011) Peculiar features of heat capacity for Cu and Ni nanoclusters. J Nanopart Res 13:6419–6425. https://doi.org/10.1007/s11051-011-0394-z

    Article  CAS  Google Scholar 

  49. Grigoriev IS, Meilikhov EZ, Radzig AA (1997) Handbook of physical quantities. CRC Press, Boca Raton

    Google Scholar 

  50. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  Google Scholar 

  51. Garip AK (2018) A molecular dynamics study: structures and thermal stability of PdmPt(13-m)Ag42 ternary nanoalloys. Int J Mod Phys C 29:1850084. https://doi.org/10.1142/S0129183118500845

    Article  CAS  Google Scholar 

  52. Garip AK (2019) The composition effect for the thermal properties of PdnPt(42-n)Ag13 ternary nanoalloys: a molecular dynamics study. Molec Sim 45:1–10. https://doi.org/10.1080/08927022.2019.1627347

    Article  CAS  Google Scholar 

  53. Engelman Y, Bogaerts A, Neyts EC Thermodynamics at the nanoscale: phase diagrams of nickel–carbon nanoclusters and equilibrium constants for phase transitions. Nanoscale 6:11981–11987. https://doi.org/10.1039/C4NR02354D

  54. Kittel C (2005) Introduction to solid state physics, 8th edn. John Wiley & Sons, New York

    Google Scholar 

  55. Gordon A, Ford R (1972) The chemist’s companion, a handbook of practical data. Techniques and references, Wiley, New York

    Google Scholar 

  56. Tammann G (1926) Die Temperatur des Beginns innerer Diffusion in Kristallen. Z Anorg Allg Chem 157:321–325. https://doi.org/10.1002/zaac.19261570123

    Article  CAS  Google Scholar 

  57. Dai Y, Lu P, Cao Z, Campbell CT, Xia Y (2018) The physical chemistry and materials science behind sinter-resistant catalysts. Chem Soc Rev 47:4314–4331. https://doi.org/10.1039/c7cs00650k

    Article  CAS  Google Scholar 

  58. Lindemann F (1910) About the calculation of molecular own frequencies. Phys Mag 11:609–612

    CAS  Google Scholar 

  59. Isihara A (1971) Statistical physics. Academic Press, New York

    Google Scholar 

  60. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560. https://doi.org/10.1002/andp.19053220806

    Article  Google Scholar 

  61. Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys 324:371–381. https://doi.org/10.1002/andp.19063240208

    Article  Google Scholar 

  62. Dubinin N (2020) Self-diffusion in liquid copper, silver, and gold. Metals 10:1651. https://doi.org/10.3390/met10121651

    Article  CAS  Google Scholar 

  63. Meyer A (2015) The measurement of self-diffusion coefficients in liquid metals with quasielastic neutron scattering. EPJ Web Conf 83:01002. https://doi.org/10.1051/epjconf/20158301002

    Article  Google Scholar 

  64. Okkerse B (1956) Self-diffusion of gold. Phys Rev 103:1246–1249. https://doi.org/10.1103/physrev.103.1246

    Article  CAS  Google Scholar 

  65. Young NP, van Huis MA, Zandbergen HW, Xu H, Kirkland AI (2010) Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy. Ultramicroscopy 110:506–516. https://doi.org/10.1016/j.ultramic.2009.12.010

    Article  CAS  Google Scholar 

  66. Ajayan PM, Marks LD (1988) Quasimelting and phases of small particles. Phys Rev Let 60:585–587. https://doi.org/10.1103/physrevlett.60.585

    Article  CAS  Google Scholar 

  67. Ajayan PM, Marks LD (1989) Experimental evidence for quasimelting in small particles. Phys Rev Let 63:279–282. https://doi.org/10.1103/physrevlett.63.279

    Article  CAS  Google Scholar 

  68. Kuo C-L, Clancy P (2005) Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J Phys Chem B 109:13743–13754. https://doi.org/10.1021/jp0518862

    Article  CAS  Google Scholar 

  69. Liang T, Zhou D, Wu Z, Shi P (2017) Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study. Nanotechnology 28:485704. https://doi.org/10.1088/1361-6528/aa92ac

    Article  CAS  Google Scholar 

Download references

Funding

Our study was performed in Tver State University and supported by the Russian Science Foundation grant No. 23-22-00414, https://rscf.ru/en/project/23-22-00414/.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Vladimir Samsonov, Igor Talyzin, Sergey Vasilyev, Vladimir Puytov, and Aleksander Romanov. The first draft of the manuscript was written by Vladimir Samsonov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. M. Samsonov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 962 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Talyzin, I.V., Vasilyev, S.A. et al. On surface pre-melting of metallic nanoparticles: molecular dynamics study. J Nanopart Res 25, 105 (2023). https://doi.org/10.1007/s11051-023-05743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05743-0

Keywords

Navigation