Skip to main content
Log in

Optimization of immersion direction and time of covalently self-assembled monolayer gold nanourchins on glass as SERS substrate

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A glass-based surface-enhanced Raman scattering (SERS) substrate using 90 nm gold nanourchin (GNU) was fabricated as a localized surface plasmon resonance (LSPR) sensor. Self-assembly of GNU monolayer is achieved by silanizing the glass surface with amino-terminated (3-aminopropyl) triethoxysilane (APTES) and covalently grafting with thiol-terminated mercaptoundecanoic (MUA). Six substrates are used in vertical direction for immobilization of GNU at two concentrations of 5 pM (S1, S2, S3) and 15 pM (S4, S5, S6) for three sets of time 1, 3, and 5 h in each case, respectively, and one substrate (S7) is immersed horizontally at 15 pM for 5 h. The substrates are assessed using reflective surface-enhanced Fourier transform near-infrared (SEFT-NIR) and SERS. The results show that S3 (5 pM, 3 h) ≈ 96%, S4 (15 pM, 1 h) ≈ 97%, and S7 ≈ 97.8% have the highest GNU coverage, respectively. However, higher GNU coverage does not necessarily produce the maximum SERS signal as in our case S2 > S3 > S1 and S4 > S5 > S6. Principal component analysis (PCA) results can be interpreted as showing significant variance between the groups with less variation between the trials in the SEFT-NIR data, while the PC plots of the Raman data show that the spectra of all groups look very similar. Both techniques showed S3 and S4, and S7 as optimized substrates. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicated a dispersed distribution of GNU with peak heights of ≤ 10 nm. This work is fundamentally important for designing and modeling LSPR-based nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636

    Article  CAS  Google Scholar 

  2. Khosroshahi ME, Tajabadi M (2017) Multifunctional nanoplatform for targeted laser-induced hyperthermia and microscopy of breast cancer cells using SPION-based gold and folic acid conjugated nanodendrimers: an in vitro assay. J Nanomed Nanotechnol 8:1–11

    Google Scholar 

  3. Pankhurst Q, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:167–181

    Article  Google Scholar 

  4. He H, Xie C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80:5951–6595

    Article  CAS  Google Scholar 

  5. Khosroshahi ME, Tajabadi M (2016) Characterization and cellular fluorescence microscopy of superparamagnetic nanoparticles functionalized with third generation nanomolecular dendrimers: in-vitro cytotoxicity and uptake study. J Nanomater Mol Nanotechnol 5:1–11

    Article  Google Scholar 

  6. Pattani V, Tunnell J (2012) Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Lasers Surg Med 44:675–684

    Article  Google Scholar 

  7. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu K (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomed 10:3315–3328

    CAS  Google Scholar 

  8. Kim M, Lee JH, Nam JM (2019) Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci 6:1–23

    Article  Google Scholar 

  9. Gormley A, Larson N, Sadekar S, Robinson R, Ray A, Ghandehari H (2012) Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 7:158–167

    Article  CAS  Google Scholar 

  10. Khosroshahi ME, Ghazanfari L, Hasannejad Z, Lenhert S (2015) Dynamics study and analysis of laser-induced transport of nanoferrofluid in water using fluorescein isothiocyanate (FITC) as fluorescence marker. Nanomed Nanotech 6:1–9

    Google Scholar 

  11. Licciardi M, Volsi AL, Mauro N, Scialabba C, Cavallaro G, Giammona G (2007) Preparation and characterization of inulin coated gold nanoparticles for selective delivery of doxorubicin to breast cancer cells. J Nanomater 2016:2078315

    Google Scholar 

  12. Willets K, Van Duyne R (2007) Localized surface plasmon resonance spectroscopy and sensing. An Phys Rev Chem 58:267–297

    Article  CAS  Google Scholar 

  13. Petryayeva E, Krull U (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24

    Article  CAS  Google Scholar 

  14. Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  15. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem 111:3806–3819

    CAS  Google Scholar 

  16. Hassannejad Z, Khosroshahi ME (2013) Synthesis and evaluation of time dependent optical properties of plasmonic–magnetic nanoparticles. Opt Mat 35:644–651

    Article  CAS  Google Scholar 

  17. Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179

    Article  CAS  Google Scholar 

  18. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticles size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  19. Wang C, Meloni M, Wu X, Zhuo M, He T, Wang J, Wang C, Dong P (2019) Magnetic plasmonic particles for SERS-based bacteria sensing: a review. AIP Adv 9:1–18

    Google Scholar 

  20. Ong T, Blanch E, Jones O (2020) SERS in environmental analysis monitoring and assessment. Sci Total Environ 720:1–12

    Article  Google Scholar 

  21. Alvarez-Puebla R, Liz- Marzán L (2010) SERS-based diagnosis and biodetection. Small 6:604–610

    Article  CAS  Google Scholar 

  22. Masson J (2017) Surface plasmon resonance clinical biosensors for medical diagnosis. ACS Sens 2:16–30

    Article  CAS  Google Scholar 

  23. Tian Z, Ren B, Wu D (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  24. López-Lorente ÁI (2021) Recent development on gold nanoparticles nanostructures for surface enhanced Raman spectroscopy: particle shape, substrates and analytical applications. A review. Anal Chimica Acta 1168:1–21

    Article  Google Scholar 

  25. Bruzas I, Lum W, Gorunmez Z, Sagle L (2018) Advances in SERS substrates for lipid and protein characterization: sensing and beyond. Analyst 143:3990–4400

    Article  CAS  Google Scholar 

  26. Wang Y, Wang E (2010) Nanoparticles SERS substrates. In: Schlucker S (ed) Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications. Wiley-VCH, Weinheim, pp 39–69

    Chapter  Google Scholar 

  27. Fortuni B, Inose T, Uezono S, Toyouchi S, Umemoto K, Sekine S, Fujita Y, Ricci M, Lu G, Masuhara A, Hutchison J, Latterini L, Uji-I H (2017) In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem Commun 53:1298–11301

    Article  Google Scholar 

  28. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  29. Toderas F, Baia M, Baia L, Astilean S (2007) Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology 18:25502

    Article  Google Scholar 

  30. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  31. Lee J, Shim S, Kim B, Shin HS (2011) Surface-enhanced Raman scattering of single-and few-layer graphene by the deposition of gold nanoparticles. Chem Eur J 17:2381–2387

    Article  CAS  Google Scholar 

  32. Read CG, Steinmiller EM, Choi KS (2009) Atomic plane-selective deposition of gold nanoparticles on metal oxide crystals exploiting preferential adsorption of additives. J Am Chem Soc 131:12040–12041

    Article  CAS  Google Scholar 

  33. Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Cat Lett 51:53–58

    Article  CAS  Google Scholar 

  34. Dharanivasan G, Rajamuthuramalingam T, Jesse D, Rajendiran N, Kathiravan K (2015) Gold nanoparticles assisted characterization of amine functionalized polystyerene multiwell plate and glass slide surfaces. Appl Nanosci 5:39–50

    Article  CAS  Google Scholar 

  35. Sasmal HS, Halder A, Kunjattu S, Dey K, Nadol A, Ajithkumar T, Bedadur P, Banerjee R (2019) Covalent self-assembly in two dimensions: connecting covalent organic framework nanospheres into crystalline and porous thin films. J Am Chem Soc 141:20371–20379

    Article  CAS  Google Scholar 

  36. Vandenberg E, Bertilsson L, Leidberg B, Uvdal K, Erlandsson R, Elwing H, Lundstrom I (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J Colloid Interf Sci 147:103–118

    Article  CAS  Google Scholar 

  37. Weinrib H, Meiri A, Duadi H, Fixler D (2012) Uniformly immobilizing gold nanorods on a glass substrate. J Atomic Mol Opt Phys 2012:683830

    Article  Google Scholar 

  38. Indrasekara AS, Meyers S, Shubeita S, Feldman LC, Gustafsson T, Fabris L (2014) Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 6:8891–8899

    Article  CAS  Google Scholar 

  39. He S, Kang M, Khan F, Tan E, Reyes M, Kah J (2015) Optimizing gold nanostars as a colloid-based SERS substrate. J Opt 17:1–13

    Article  Google Scholar 

  40. Lai C, Wang G, Ling T, Wang T, Chiu P, Chau Y, Huang C, Chiang H (2017) Near infrared SERS based on star shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci Rep 7:1–8

    Article  Google Scholar 

  41. Freeman R, Grabar K, Alison K, Bright R, Davis J, Guthrie A, Hommer M, Jackson M, Smith P, Walter D, Natan M (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632

    Article  CAS  Google Scholar 

  42. Zhang W, Fang Z, Zhu X (2017) Near field Raman spectroscopy with aperture tips. Chem Rev 117:5095–5109

    Article  CAS  Google Scholar 

  43. Zhu J, Gao J, Li J, Zhao J (2014) Improve the surface-enhanced Raman scattering from rhodamine 6G adsorbed gold nanostars with vimineous branches. Appl Surf Sci 322:136–142

    Article  CAS  Google Scholar 

  44. Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267

    Article  CAS  Google Scholar 

  45. Fan X, Zhang W, Singh D (2014) Light scattering and surface plasmons on small spherical particles. Light Sci Appl 3:1–14

    Article  Google Scholar 

  46. Yu M, Huang Z, Liu Z, Chen J, Liu Y, Tang L, Liu G (2018) Annealed gold nanoshells with highly-dense hotspots foe large-area efficient Raman scattering substrates. Sens Actuators B 262:845–851

    Article  CAS  Google Scholar 

  47. Hrelescu C, Sau T, Rogach A, Jackel F, Laurent G, Douillard L, Charra F (2011) Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett 11:402–407

    Article  CAS  Google Scholar 

  48. Du L, Tang D, Yuan G, Wei S, Yuan X (2013) Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction. Appl Phys Lett 102:1–14

    Article  CAS  Google Scholar 

  49. McNay G, Eustace D, Smith W, Faulds K, Graham D (2011) SERS and SERRS: a review of applications. Appl Spect 65:825–837

    Article  CAS  Google Scholar 

  50. Moskovits M (1982) Surface selection rules. J Chem Phys 77:4408–4416

    Article  CAS  Google Scholar 

  51. Su K, Wei Q, Zhang X, Mock J, Smith D, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MIS Electronics Inc. for supporting and providing funding for this research and Mr. H. Zereshkian from Circuit Plus Inc. for use of their oven for the experiment. We also thank York University for use of its SEM and AFM services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroshahi, M.E., Chabok, R., Chung, N. et al. Optimization of immersion direction and time of covalently self-assembled monolayer gold nanourchins on glass as SERS substrate. J Nanopart Res 25, 97 (2023). https://doi.org/10.1007/s11051-023-05741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05741-2

Keywords

Navigation