Skip to main content
Log in

Superior photosensing performance by Ag nanoparticles textured Al2O3 thin film based device

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This report discusses about the improvement in photosensing characteristics of a silver (Ag) nanoparticles (NP) textured aluminum oxide (Al2O3) thin film (TF) device by glancing angle deposition (GLAD) technique. This device has been synthesized on n-Si substrates using an electron beam (e-beam) evaporation technique. The samples were then morphologically and crystallographically characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD), respectively. The Ag NP/Al2O3 TF-based device has a two fold improvement in photocurrent compared to the bare Al2O3 TF device owing to the generation of the interfacial trap states. The Ag NP/Al2O3 TF-based device also possessed 3.1 fold enhancement in photosensitivity, improved barrier height (0.80 eV), detectivity (3.7 × 107 jones), and noise equivalent power (NEP: 2.17 × 10−9 W). The Ag NP/Al2O3 TF device has faster photosensing performances (Tr = 0.25 s and Tf = 0.25 s) than the bare Al2O3 TF device (Tr = 0.60 s and Tf = 0.58 s). Therefore, the improved parameters will ensure that the Ag NP/Al2O3 TF device can be used as a fast-switching efficient photosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The materials described in the manuscript, including all relevant raw data, will be freely available from the corresponding author upon reasonable request.

Code availability

Not applicable

References

  1. Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W (2018) Visualized UV photodetectors based on prussian blue/TiO2 for smart irradiation monitoring application. Adv Mater Technol 3:1700288. https://doi.org/10.1002/admt.201700288

    Article  CAS  Google Scholar 

  2. An J, Le TS, Lim CH, Tran VT, Zhan Z, Gao Y, Zheng L, Sun G, Kim YJ (2018) Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci 5:1800496. https://doi.org/10.1002/advs.201800496

    Article  CAS  Google Scholar 

  3. Seo JH, Zhang K, Kim M, Zhao D, Yang H, Zhou W, Ma Z (2016) Flexible phototransistors based on single‐crystalline silicon nanomembranes. Adv Opt Mater 4:120–125. https://doi.org/10.1002/adom.201500402

    Article  CAS  Google Scholar 

  4. Li D, Zhou D, Xu W, Chen X, Pan G, Zhou X, Ding N, Song H (2018) Plasmonic photonic crystals induced two‐order fluorescence enhancement of blue perovskite nanocrystals and its application for high‐performance flexible ultraviolet photodetectors. Adv Funct Mater 28:1804429. https://doi.org/10.1002/adfm.201804429

    Article  CAS  Google Scholar 

  5. Konstantatos G, Sargent EH (2010) Nanostructured materials for photon detection. Nat Nanotechnol 5:391–400. https://doi.org/10.1038/nnano.2010.78

    Article  CAS  Google Scholar 

  6. Raman R, Nath A, Sarkar MB (2022) Influence of annealing temperature on ZrO2 nanoparticles for improved photodetection. IEEE Electron Device Lett. 43:918–921. https://doi.org/10.1109/LED.2022.3168562

    Article  CAS  Google Scholar 

  7. Zhou C, Ai Q, Chen X, Gao X, Liu K, Shen D (2019) Ultraviolet photodetectors based on wide bandgap oxide semiconductor films. Chin Phys B 28:048503. https://doi.org/10.1088/1674-1056/28/4/048503

    Article  CAS  Google Scholar 

  8. Fang H, Zheng C, Wu L, Li Y, Cai J, Hu M, Fang X, Ma R, Wang Q, Wang H (2019) Solution‐processed self‐powered transparent ultraviolet photodetectors with ultrafast response speed for high‐performance communication system. Adv Funct Mater 29:1809013. https://doi.org/10.1002/adfm.201809013

    Article  CAS  Google Scholar 

  9. Chen D, Wei L, Meng L, Wang D, Chen Y, Tian Y, Yan S, Mei L, Jiao J (2018) Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays. J Alloys Compd 751:56–61. https://doi.org/10.1016/j.jallcom.2018.04.122

    Article  CAS  Google Scholar 

  10. Zhang M, Li D, Zhou J, Chen W, Ruan S (2015) Ultraviolet detector based on TiO2 nanowire array–polymer hybrids with low dark current. J Alloys Compd 618:233–235. https://doi.org/10.1016/j.jallcom.2014.07.040

    Article  CAS  Google Scholar 

  11. Dusinski E, Szmidt J, Zdunek K, Elert M, Barcz A (2001) Al2O3 layers for microelectronics applications. J Wide Bandgap Mater 9:109–116. https://doi.org/10.1106/152451102025838

    Article  CAS  Google Scholar 

  12. Mahat AM, Mastuli MS, Kamarulzaman N (2016) Influence of annealing temperature on the phase transformation of Al2O3. InAIP Conf Proc 1711:050001. https://doi.org/10.1063/1.4941627

    Article  Google Scholar 

  13. Banerjee W, Zhang X, Luo Q, Lv H, Liu Q, Long S, Liu M (2018) Design of CMOS compatible, high‐speed, highly‐stable complementary switching with multilevel operation in 3D vertically stacked novel HfO2/Al2O3/TiOx (HAT) RRAM. Adv Electron Mater 4:1700561. https://doi.org/10.1002/aelm.201700561

    Article  CAS  Google Scholar 

  14. Shi DK, Wang Y, Wu X, Yang ZY, Li XJ, Yang JQ, Cao F (2021) Improving the barrier inhomogeneity of 4H-SiC Schottky diodes by inserting Al2O3 interface layer. Solid-State Electron 180:107992. https://doi.org/10.1016/j.sse.2021.107992

    Article  CAS  Google Scholar 

  15. Ali K, Ali J, Mehdi SM, Choi KH, An YJ (2015) Rapid fabrication of Al2O3 encapsulations for organic electronic devices. Appl Surf Sci 353:1186–1194. https://doi.org/10.1016/j.apsusc.2015.07.032

    Article  CAS  Google Scholar 

  16. Parvin MH, Arjomandi J, Lee JY (2018) γ-Al2O3 nanoparticle catalyst mediated polyaniline gold electrode biosensor for vitamin E. Catal Commun 110:59–63. https://doi.org/10.1016/j.catcom.2018.03.009

    Article  CAS  Google Scholar 

  17. Nur JN, Hasib MH, Asrafy F, Shushama KN, Inum R, Rana M (2019) Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt Quantum Electron 51:1–11. https://doi.org/10.1007/s11082-019-1886-9

    Article  CAS  Google Scholar 

  18. Nagai D, Nishibori M, Itoh T, Kawabe T, Sato K, Shin W (2015) Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sens Actuators B: Chem 206:488–494. https://doi.org/10.1016/j.snb.2014.09.059

    Article  CAS  Google Scholar 

  19. Tang Y, Wu W, Wang B, Dai X, Xie W, Yang Y, Zhang R, Shi X, Zhu H, Luo J, Guo Y (2020) H2S gas sensing performance and mechanisms using CuO-Al2O3 composite films based on both surface acoustic wave and chemiresistor techniques. Sens Actuators B: Chem 325:128742. https://doi.org/10.1016/j.snb.2020.128742

    Article  CAS  Google Scholar 

  20. Wang J, Jiang S, Liu H, Wang S, Pan Q, Yin Y, Zhang G (2020) P-type gas-sensing behavior of Ga2O3/Al2O3 nanocomposite with high sensitivity to NOx at room temperature. J Alloys Compd 814:152284. https://doi.org/10.1016/j.jallcom.2019.152284

    Article  CAS  Google Scholar 

  21. Alekseeva L, Nabatame T, Chikyow T, Petrov A (2016) Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers. Jpn J Appl Phys 55:08PB02. https://doi.org/10.7567/JJAP.55.08PB02

    Article  CAS  Google Scholar 

  22. Mahata C, Kang M, Kim S (2020) Multi-level analog resistive switching characteristics in tri-layer HfO2/Al2O3/HfO2 based memristor on ITO electrode. Nanomaterials 10:2069. https://doi.org/10.3390/nano10102069

    Article  CAS  Google Scholar 

  23. Rehman MA, Akhtar I, Choi W, Akbar K, Farooq A, Hussain S, Shehzad MA, Chun SH, Jung J, Seo Y (2018) Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon 132:157–164. https://doi.org/10.1016/j.carbon.2018.02.042

    Article  CAS  Google Scholar 

  24. Singh R, Ghosh S, Subbiah AS, Mahuli N, Sarkar SK (2020) ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability. Sol Energy Mater Sol Cells 205:110289. https://doi.org/10.1016/j.solmat.2019.110289

    Article  CAS  Google Scholar 

  25. Choudhuri B, Mondal A, Ganguly A, Saha AK, Chattopadhyay KK (2015) Glancing angle synthesized indium nanoparticles covered TiO2 thin film and its structural, optoelectronic properties. Appl Phys A 118:373–379. https://doi.org/10.1007/s00339-014-8744-1

    Article  CAS  Google Scholar 

  26. Chen L, Wei H, Chen KQ, Xu HX (2013) High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice. Chin Phys B 23:027303. https://doi.org/10.1088/1674-1056/23/2/027303

    Article  CAS  Google Scholar 

  27. Li J, Guo J (2021) Effect of Ag NPs on the radiant absorption of photocatalyst film. AIMS Energy 9:830–841. https://doi.org/10.3934/energy.2021038

    Article  CAS  Google Scholar 

  28. Gupta RK, Yakuphanoglu F (2012) Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy 86:1539–1545. https://doi.org/10.1016/j.solener.2012.02.015

    Article  CAS  Google Scholar 

  29. Zhou Q, Li Z, Ni J, Zhang Z (2011) A simple model to describe the rule of glancing angle deposition. Mater Trans 52:469–473. https://doi.org/10.2320/matertrans.M2010342

    Article  CAS  Google Scholar 

  30. Yadav VK, Nath A, Das A, Mazumder JT, Sarkar MB (2020) Indium nanoparticles capped TiO2 nanowire array for boosted photosensing adoption. IEEE Electron Device Lett 42:192–195. https://doi.org/10.1109/LED.2020.3047272

    Article  Google Scholar 

  31. Mariscal-Becerra L, Carmona-Téllez S, Vázquez-Arreguín R, García-Rosas CM, Falcony C, Murrieta H, Sánchez-Alejo MA (2016) Green light emission in aluminum oxide powders doped with different terbium concentrations. Rev Mex de Fis 62:285–289. https://doi.org/10.13189/ujms.2016.040301

    Article  CAS  Google Scholar 

  32. Naik MC, Bamane SR, Pakhare KS, Potdar SS, Patil UM (2021) Synthesis of CeO2-Al2O3 nanocomposite by chemical combustion method for NO2 gas–sensing application. J Mater Sci: Mater Electron 32:19925–19937. https://doi.org/10.1007/s10854-021-06517-x

    Article  CAS  Google Scholar 

  33. Chani MT, Khan SB, Asiri AM, Karimov KS, Rub MA (2015) Photo-thermoelectric cells based on pristine α-Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive. J Taiwan Inst Chem Eng 52:93–99. https://doi.org/10.1016/j.jtice.2015.02.005

    Article  CAS  Google Scholar 

  34. Zhao C, Du J, Huang D, Li Y, Chen J, Li W (2016) Microstructure and strong optical absorption property of the Ag/Al2O3 nano-films. J Alloys Compd 671:419–423. https://doi.org/10.1016/j.jallcom.2015.11.226

    Article  CAS  Google Scholar 

  35. Nath A, Bhati N, Mahajan BK, Rakshit JK, Sarkar MB (2022) Silver nanoparticles textured oxide thin films for surface plasmon enhanced photovoltaic properties. Plasmonics 17:193–201. https://doi.org/10.1007/s11468-021-01509-3

    Article  CAS  Google Scholar 

  36. Nath A, Sarkar MB (2021) Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors. Plasmonics 16:37–48. https://doi.org/10.1007/s11468-020-01262-z

    Article  CAS  Google Scholar 

  37. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A 216:149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  38. Dwivedi SM, Ghosh A, Deepthy S, Maji M, Lahiri R, Mondal S, Ghosh C, Dalal A, Mondal A, Ghosh M (2020) Detection technique for vitamin D3 using Er-doped TiO2 nanowire-based UV photodetector. J Nanophoton 14:046001–0460017. https://doi.org/10.1117/1.JNP.14.046001

    Article  Google Scholar 

  39. Laskri A, Drici A, Boulouma A, Amara A, Bernede JC (2019) Investigation of microstructural and optical properties of Ag3O4 thin films sprayed onto glass substrate. J Nano R 58:90–101. https://doi.org/10.4028/www.scientific.net/JNanoR.58.90

    Article  CAS  Google Scholar 

  40. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134. https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  41. Jeong JA, Kim HK (2013) Al2O3/Ag/Al2O3 multilayer thin film passivation prepared by plasma damage-free linear facing target sputtering for organic light emitting diodes. Thin Solid Films 547:63–67. https://doi.org/10.1016/j.tsf.2013.05.003

    Article  CAS  Google Scholar 

  42. Moudgil A, Sharma KK, Das S (2019) In2O3/TiO2 heterostructure for highly responsive low-noise ultraviolet photodetector. IEEE Trans Electron Devices 67:166–172. https://doi.org/10.1109/TED.2019.2954344

    Article  Google Scholar 

  43. Yang J, Jiang YL, Li LJ, Muhire E, Gao MZ (2016) High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8:8170–8177. https://doi.org/10.1039/C5NR09248E

    Article  CAS  Google Scholar 

  44. Devi VL, Jyothi I, Reddy VR, Choi CJ (2012) Schottky barrier parameters and interfacial reactions of rapidly annealed au/cu bilayer metal scheme on N-type InP. Open Appl Physics J 5:1–9. https://doi.org/10.2174/1874183501205010001

    Article  CAS  Google Scholar 

  45. Nath A, Mahajan BK, Singh LR, Vishwas S, Nanda RK, Sarkar MB (2021) Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition. J Electron Mater 50:3722–3730. https://doi.org/10.1007/s11664-021-08889-6

    Article  CAS  Google Scholar 

  46. Wang H, Lim JW, Mota FM, Jang YJ, Yoon M, Kim H, Hu W, Nohc YY, Kim DH (2017) Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J Mater Chem C 5:399–407. https://doi.org/10.1039/C6TC04662B

    Article  CAS  Google Scholar 

  47. Liu HY, Lin WH, Sun WC, Wei SY, Yu SM (2017) A study of ultrasonic spray pyrolysis deposited rutile-TiO2-based metal-semiconductor-metal ultraviolet photodetector. Mater Sci Semicond Process 57:90–94. https://doi.org/10.1016/j.mssp.2016.10.005

    Article  CAS  Google Scholar 

  48. Chen TP, Young SJ, Chang SJ, Huang BR, Wang SM, Hsiao CH, Wu SL, Yang CB (2012) Low-frequency noise characteristics of GaN Schottky barrier photodetectors prepared with nickel annealing. IEEE Sensors J 12:2824–2829. https://doi.org/10.1109/JSEN.2012.2200886

    Article  CAS  Google Scholar 

  49. Lee KH, Chang PC, Chang SJ, Wang YC, Yu CL, Wu SL (2009) Characterization of AlGaN/GaN metal-semiconductor-metal photodetectors with a low-temperature AlGaN interlayer. IEEE Sensors J 9:723-727. IEEE Sensors J 9(6):723–727. https://doi.org/10.1109/jsen.2009.2021190

    Article  CAS  Google Scholar 

  50. Khokhra R, Bharti B, Lee HN, Kumar R (2017) Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-15125-x

    Article  CAS  Google Scholar 

  51. Dixit V, Nair S, Joy J, Vyas CU, Patel AB, Chauhan P, Sumesh CK, Narayan S, Jha PK, Solanki GK, Patel KD (2019) Growth and application of WSe2 single crystal synthesized by DVT in thin film hetero-junction photodetector. Eur Phys J B 92:1–9. https://doi.org/10.1140/epjb/e2019-90736-3

    Article  CAS  Google Scholar 

  52. Gu P, Zhu X, Yang D (2019) Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl Phys A 125:1–8. https://doi.org/10.1007/s00339-018-2361-3

    Article  CAS  Google Scholar 

  53. Sarkar MB, Mondal A, Choudhuri B, Mahajan BK, Chakrabartty S, Ngangbam C (2014) Enlarged broad band photodetection using Indium doped TiO2 alloy thin film. J Alloys Compd 615:440–445. https://doi.org/10.1016/j.jallcom.2014.06.184

    Article  CAS  Google Scholar 

  54. Lee YB, Kim SK, Lim YR, Jeon IS, Song W, Myung S, Lee SS, Lim J, An KS (2017) Dimensional-hybrid structures of 2D materials with ZnO nanostructures via pH-mediated hydrothermal growth for flexible UV photodetectors. ACS Appl Mater Interfaces 9:15031–15037. https://doi.org/10.1021/acsami.7b01330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged NIT Agartala, India for all the assistance.

Author information

Authors and Affiliations

Authors

Contributions

Abhijit Das: methodology, device fabrication, measurements, data collection, data analysis, writing—original draft.

Amitabha Nath: device fabrication, data analysis and writing—original draft, review and editing.

Shuvam Pawar: characterizations and data analysis.

Naorem Khelchand Singh: data collection and validation.

Mitra Barun Sarkar: conceptualization, validation, editing and supervision.

Corresponding author

Correspondence to Mitra Barun Sarkar.

Ethics declarations

Ethics approval

I have followed the ethical principles and accurate references to scientific sources in my original article.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

I consent to the publication of my original research article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Nath, A., Pawar, S. et al. Superior photosensing performance by Ag nanoparticles textured Al2O3 thin film based device. J Nanopart Res 25, 88 (2023). https://doi.org/10.1007/s11051-023-05740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05740-3

Keywords

Navigation