Skip to main content
Log in

Comparing oxidation of aluminum by oxygen and ozone using reactive force field molecular dynamics simulations

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ozone has attracted more scholars’ attention due to its less environmental injury during oxidation. Oxidation with ozone has been more regarded because ozone evaluates oxygen and can form a terrific oxide layer even at lower temperatures compared to oxygen. This work investigated the Al(100) surface oxidation simulations by O2 and O3 molecules at 400, 600, and 800 K temperatures with the reactive force field (ReaxFF) method. In separate simulation boxes, one hundred ozone molecules and 150 oxygen molecules have been placed in a space above the Al(100) surfaces to examine this metal’s behavior with them (gases incipient density of 0.47 g/cm3). We found further growth of the oxide layer in the case of ozone-aluminum. Subsequently, we surveyed the correlation between temperatures and the development of alumina layers in the case of oxygen and ozone in separate sets through ReaxFF simulation to untangle the mechanism of oxidation kinetics of the Al(100) surface by ozone. Even though there are demonstrated constraints on growing an oxide layer with ozone and oxygen, it is possible to produce a thicker oxide layer at lower temperatures using ozone. Here, we used LAMMPS as our program package for all simulations and used reactive molecular dynamics simulation, which is a relatively inexpensive tool for studying complex conditions that are impossible to reproduce with other techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and any data related to the finding are available from the corresponding author upon request.

References

  1. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C, Nanomater Interfaces 112(36):13958–13963. https://doi.org/10.1021/jp804088z

    Article  CAS  Google Scholar 

  2. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113(1):011301. https://doi.org/10.1063/1.4754271

    Article  CAS  Google Scholar 

  3. Dokhan A, Price E, Seitzman J, Sigman R (2002) The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants. Proc Combust Inst 29(2):2939–2946. https://doi.org/10.1016/s1540-7489(02)80359-5

    Article  CAS  Google Scholar 

  4. Gańczyk-Specjalska K, Zygmunt A, Cieślak K, Gołofit T, Gańczyk-Specjalska K, Kasztankiewicz A (2017) Application and properties of aluminum in primary and secondary explosives. J Elementol 2/2017. https://doi.org/10.5601/jelem.2016.21.3.1073

  5. DeLuca LT (2018) Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def Technol 14(5):357–365. https://doi.org/10.1016/j.dt.2018.06.005

    Article  Google Scholar 

  6. Wang F, Wu Z, Shangguan X, Sun Y, Feng J, Li Z, Chen L, Zuo S, Zhuo R, Yan P (2017) Preparation of mono-dispersed, highenergy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers. Sci Rep 7(1):5228. https://doi.org/10.1038/s41598-017-05599-0

    Article  CAS  Google Scholar 

  7. Shih TS, Liu ZB (2006) Thermally-formed oxide on aluminum and magnesium. Mater Trans 47(5):1347–1353. https://doi.org/10.2320/matertrans.47.1347

    Article  CAS  Google Scholar 

  8. Jeurgens LPH, Sloof WG, Tichelaar FD, Mittemeijer EJ (2002) Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J Appl Phys 92(3):1649–1656. https://doi.org/10.1063/1.1491591

    Article  CAS  Google Scholar 

  9. Yang W, Luo ZP, Bao WK, Xie H, You ZS, Jin HJ (2021) Light, strong, and stable nanoporous aluminum with native oxide shell. Sci Adv 7(28):9471. https://doi.org/10.1126/sciadv.abb9471

    Article  CAS  Google Scholar 

  10. van Gogh ATM, van der Molen SJ, Kerssemakers JWJ, Koeman NJ, Griessen R (2000) Performance enhancement of metal-hydride switchable mirrors using Pd/AlOx composite cap layers. Appl Phys Lett 77(6):815–817. https://doi.org/10.1063/1.1306643

    Article  Google Scholar 

  11. Gloos K, Koppinen PJ, Pekola JP (2003) Properties of native ultrathin aluminium oxide tunnel barriers. J Phys: Condens Matter 15(10):1733–1746. https://doi.org/10.1088/0953-8984/15/10/320

    Article  CAS  Google Scholar 

  12. Petford-Long AK, Ma YQ, Cerezo A, Larson DJ, Singleton EW, Karr BW (2005) The formation mechanism of aluminum oxide tunnel barriers: three-dimensional atom probe analysis. J Appl Phys 98(12):124904. https://doi.org/10.1063/1.2149188

    Article  CAS  Google Scholar 

  13. Gutiérrez G, Johansson B (2002) Molecular dynamics study of structural properties of amorphous Al2O3. Phys Rev B 65(10):104202. https://doi.org/10.1103/physrevb.65.104202

    Article  Google Scholar 

  14. Dreizin EL (1996) Experimental study of stages in aluminium particle combustion in air. Combust Flame 105(4):541–556. https://doi.org/10.1016/0010-2180(95)00224-3

    Article  CAS  Google Scholar 

  15. Alavi S, Mintmire JW, Thompson DL (2004) Molecular dynamics simulations of the oxidation of aluminum nanoparticles. J Phys Chem B 109(1):209–214. https://doi.org/10.1021/jp046196x

    Article  CAS  Google Scholar 

  16. Aykol M, Persson KA (2018) Oxidation protection with amorphous surface oxides: thermodynamic insights from ab initio simulations on aluminum. ACS Appl Mater Amp Interfaces 10(3):3039–3045. https://doi.org/10.1021/acsami.7b14868

    Article  CAS  Google Scholar 

  17. Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10(5):843–859. https://doi.org/10.1080/13647830600800686

    Article  CAS  Google Scholar 

  18. Henz BJ, Hawa T, Zachariah MR (2010b) Atomistic simulation of the aluminum nanoparticle oxidation mechanism. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010–336. https://doi.org/10.2514/6.2010-336

  19. Chu Q, Shi B, Liao L, Luo KH, Wang N, Huang C (2018) Ignition and oxidation of core–shell Al/Al2O3 nanoparticles in an oxygen atmosphere: insights from molecular dynamics simulation. J Phys Chem C, Nanomater Interfaces 122(51):29620–29627. https://doi.org/10.1021/acs.jpcc.8b09858

    Article  CAS  Google Scholar 

  20. Hasnaoui A, Politano O, Salazar JM, Aral G, Kalia RK, Nakano A, Vashishta P (2005) Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals. Surf Sci 579(1):47–57. https://doi.org/10.1016/j.susc.2005.01.043

    Article  CAS  Google Scholar 

  21. Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Met 78(3–4):179–195. https://doi.org/10.1007/s11085-012-9299-1

    Article  CAS  Google Scholar 

  22. Jeurgens L, Sloof W, Tichelaar F, Mittemeijer E (2002) Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Films 418(2):89–101. https://doi.org/10.1016/s0040-6090(02)00787-3

    Article  CAS  Google Scholar 

  23. Amiri N, Ghasemi JB, Behnejad H (2021) Atomistic insights into the protection failure of the graphene coating under the hyperthermal impacts of reactive oxygen species: ReaxFF-based molecular dynamics simulations. Appl Surface Sci 554:149606. https://doi.org/10.1016/j.apsusc.2021.149606

    Article  CAS  Google Scholar 

  24. Kazor A, Gwilliam R, Boyd IW (1994) Growth rate enhancement using ozone during rapid thermal oxidation of silicon. Appl Phys Lett. https://doi.org/10.1063/1.112318

    Article  Google Scholar 

  25. Gupta S, Hannah S, Watson CP, Šutta P, Pedersen RH, Gadegaard N, Gleskova H (2015) Ozone oxidation methods for aluminum oxide formation: application to low-voltage organic transistors. Org Electron 21:132–137. https://doi.org/10.1016/j.orgel.2015.03.007

    Article  CAS  Google Scholar 

  26. Ridgway HF, Mohan B, Cui X, Chua KJ, Islam MR (2017) Molecular dynamics simulation of gas-phase ozone reactions with sabinene and benzene. J Mol Graph Model 74:241–250. https://doi.org/10.1016/j.jmgm.2017.04.020

    Article  CAS  Google Scholar 

  27. Lian Z, Zhu C, Zhang S, Ma W, Zhong Q (2021) Study on the synergistic oxidation of sulfite solution by ozone and oxygen: kinetics and mechanism. Chem Eng Sci 242(116745):116745. https://doi.org/10.1016/j.ces.2021.116745

    Article  CAS  Google Scholar 

  28. Kim MJ, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247(1):71–79. https://doi.org/10.1016/s0048-9697(99)00470-2

    Article  CAS  Google Scholar 

  29. Kuznetsova A, Yates JT, Zhou G, Yang JC, Chen X (2001) Making a superior oxide corrosion passivation layer on aluminum using ozone. Langmuir: ACS J Surf Colloids 17(7):2146–2152. https://doi.org/10.1021/la001300x

    Article  CAS  Google Scholar 

  30. Fink C, Nakamura K, Ichimura S, Jenkins SP (2009) Silicon oxidation by ozone. J Phys: Condens Matter 21(18):183001. https://doi.org/10.1088/0953-8984/21/18/183001

    Article  CAS  Google Scholar 

  31. Ramanathan S, Chi D, McIntyre PC, Wetteland C, Tesmer JR (2003) Ultraviolet-ozone oxidation of metal films. J Electrochem Soc 150(5):F110. https://doi.org/10.1149/1.1566416

    Article  CAS  Google Scholar 

  32. Karwowska B, Sperczyńska E (2022) Organic matter and heavy metal ions removal from surface water in processes of oxidation with ozone, UV irradiation, coagulation and adsorption. Water 14(22):3763. https://doi.org/10.3390/w14223763

    Article  CAS  Google Scholar 

  33. Wang L, Tao Y, Su B, Liu P (2022) Environmental and health risks posed by heavy metal contamination of groundwater in the Sunan coal mine. China Toxics 10(7):390. https://doi.org/10.3390/toxics10070390

    Article  CAS  Google Scholar 

  34. Evertsson J, Bertram F, Zhang F, Rullik L, Merte LR, Shipilin M, Soldemo M, Ahmadi S, Vinogradov N, Carlà F, Weissenrieder J, Göthelid M, Pan J, Mikkelsen A, Nilsson J-O, Lundgren E (2015) The thickness of native oxides on aluminum alloys and single crystals. Appl Surf Sci 349:826–832. https://doi.org/10.1016/j.apsusc.2015.05.043

    Article  CAS  Google Scholar 

  35. Zhang C, Abdijalilov K, Grebel H (2007) Surface enhanced Raman with anodized aluminum oxide films. J Chem Phys 127(4):044701. https://doi.org/10.1063/1.2752498

    Article  CAS  Google Scholar 

  36. Gheribi AE, Poncsák S, Guérard S, Bilodeau J-F, Kiss L, Chartrand P (2017) Thermal conductivity of the sideledge in aluminium electrolysis cells: experiments and numerical modelling. J Chem Phys 146(11):114701. https://doi.org/10.1063/1.4978235

    Article  CAS  Google Scholar 

  37. Flötotto D, Wang ZM, Jeurgens LPH, Mittemeijer EJ (2014) Intrinsic stress evolution during amorphous oxide film growth on Al surfaces. Appl Phys Lett 104(9):091901. https://doi.org/10.1063/1.4867471

    Article  CAS  Google Scholar 

  38. Liyanage LSI, Kim S-G, Houze J, Kim S, Tschopp MA, Baskes MI, Horstemeyer MF (2014) Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method. Phys Rev B, Condens Matter Mater Phys 89(9):094102. https://doi.org/10.1103/physrevb.89.094102

    Article  Google Scholar 

  39. Wei J, Zhou W, Li S, Shen P, Ren S, Hu A, Zhou W (2019) Modified embedded atom method potential for modeling the thermodynamic properties of high thermal conductivity beryllium oxide. ACS Omega 4(4):6339–6346. https://doi.org/10.1021/acsomega.9b00174

    Article  CAS  Google Scholar 

  40. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. Jl Phys Chem A 105(41):9396–9409. https://doi.org/10.1021/jp004368u

    Article  CAS  Google Scholar 

  41. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput Mater 20(1):15011. https://doi.org/10.1038/npjcompumats.2015.11

    Article  CAS  Google Scholar 

  42. Nomura K-I, Kalia RK, Nakano A, Rajak P, Vashishta P (2020) RXMD: a scalable reactive molecular dynamics simulator for optimized time-to-solution. SoftwareX 11(100389):100389. https://doi.org/10.1016/j.softx.2019.100389

    Article  Google Scholar 

  43. Hong S, van Duin ACT (2015) Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field. J Phys Chem C, Nanomater Interfaces 119(31):17876–17886. https://doi.org/10.1021/acs.jpcc.5b04650

    Article  CAS  Google Scholar 

  44. Rahnamoun A, Kaymak MC, Manathunga M, Götz AW, van Duin ACT, Merz KM, Aktulga HM (2020) ReaxFF/AMBER—a framework for hybrid reactive/nonreactive force field molecular dynamics simulations. J Chem Theory Comput 16(12):7645–7654. https://doi.org/10.1021/acs.jctc.0c00874

    Article  CAS  Google Scholar 

  45. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108(15):4315–4320. https://doi.org/10.1021/ja00275a013

    Article  CAS  Google Scholar 

  46. Ilyin DV, Goddard WA 3rd, Oppenheim JJ, Cheng T (2019) First-principles-based reaction kinetics from reactive molecular dynamics simulations: application to hydrogen peroxide decomposition. Proc Natl Acad Sci USA 116(37):18202–18208. https://doi.org/10.1073/pnas.1701383115

    Article  CAS  Google Scholar 

  47. Amiri N, Behnejad H (2016) Oxidation of nickel surfaces through the energetic impacts of oxygen molecules: reactive molecular dynamics simulations. J Chem Phys 144(14):144705. https://doi.org/10.1063/1.4945421

    Article  CAS  Google Scholar 

  48. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  49. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33 38-27–28. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  51. Trybula ME, Korzhavyi PA (2021) Temperature dependency of structure and order evolution in 2D confined oxide films grown on Al substrates using reactive molecular dynamics. Vacuum 190(110243):110243. https://doi.org/10.1016/j.vacuum.2021.110243

    Article  CAS  Google Scholar 

  52. Trybula ME, Korzhavyi PA (2019) Atomistic simulations of Al(100) and Al(111) surface oxidation: chemical and topological aspects of the oxide structure. J Phys Chem C 123(1):334–346. https://doi.org/10.1021/acs.jpcc.8b06910

    Article  CAS  Google Scholar 

  53. Jensen KMØ (2021) Characterization of nanomaterials with total scattering and pair distribution function analysis: examples from metal oxide nanochemistry. Chimia 75(5):368–375. https://doi.org/10.2533/chimia.2021.368

    Article  CAS  Google Scholar 

  54. Gutiérrez G, Belonoshko AB, Ahuja R, Johansson B (2000) Structural properties of liquidAl2O3: a molecular dynamics study. Phys Rev 61(3):2723–2729. https://doi.org/10.1103/physreve.61.2723

    Article  Google Scholar 

  55. Li G, Niu L, Hao W, Liu Y, Zhang C (2020) Atomistic insight into the microexplosion-accelerated oxidation process of molten aluminum nanoparticles. Combust Flame 214:238–250. https://doi.org/10.1016/j.combustflame.2019.12.027

    Article  CAS  Google Scholar 

  56. Sankaranarayanan SKRS, Kaxiras E, Ramanathan S (2009) Atomistic simulation of field enhanced oxidation of Al (100) beyond the Mott potential. Phys Rev Lett 102(9):095504. https://doi.org/10.1103/PhysRevLett.102.095504

    Article  CAS  Google Scholar 

  57. Hasnaoui A, Politano O, Salazar JM, Aral G (2006) Nanoscale oxide growth on Al single crystals at low temperatures: variable charge molecular dynamics simulations. Phys Rev B, Condens Matter Mater Phys 73(3):035427. https://doi.org/10.1103/physrevb.73.035427

    Article  Google Scholar 

  58. Perron A, Garruchet S, Politano O, Aral G, Vignal V (2010) Oxidation of nanocrystalline aluminum by variable charge molecular dynamics. J Phys Chem Solids 71(2):119–124. https://doi.org/10.1016/j.jpcs.2009.09.008

    Article  CAS  Google Scholar 

  59. Chen L, Luo H, Li Z, Sha A (2021) Effect of Al doping on the early-stage oxidation of Ni-Al alloys: a ReaxFF molecular dynamics study. Appl Surf Sci 563(150097):150097. https://doi.org/10.1016/j.apsusc.2021.150097

    Article  CAS  Google Scholar 

  60. Kazor A, Boyd IW (1993) Ozone-induced rapid low temperature oxidation of silicon. Appl Phys Lett 63(18):2517–2519. https://doi.org/10.1063/1.110467

    Article  CAS  Google Scholar 

  61. Li Y, Kalia RK, Nakano A, Vashishta P (2013) Size effect on the oxidation of aluminum nanoparticle: multimillion-atom reactive molecular dynamics simulations. J Appl Phys 114(13):134312. https://doi.org/10.1063/1.4823984

    Article  CAS  Google Scholar 

  62. Koike K, Fukuda T, Ichimura S, Kurokawa A (2000) High-concentration ozone generator for oxidation of silicon operating at atmospheric pressure. Rev Sci Instrum 71(11):4182. https://doi.org/10.1063/1.1310340

    Article  CAS  Google Scholar 

  63. Larson TV, Horike NR, Harrison H (1978) Oxidation of sulfur dioxide by oxygen and ozone in aqueous solution: a kinetic study with significance to atmospheric rate processes. Atmos Environ 12(8):1597–1611. https://doi.org/10.1016/0004-6981(78)90308-6

    Article  CAS  Google Scholar 

  64. Cyster MJ, Smith JS, Vogt N, Opletal G, Russo SP, Cole JH (2021) Simulating the fabrication of aluminium oxide tunnel junctions. Npj Quantum Inf 7(1):12. https://doi.org/10.1038/s41534-020-00360-4

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the Research Council of the University of Tehran for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Behnejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper. Hassan Behnejad reports administrative support and equipment, or supplies provided by the University of Tehran. The University of Tehran accounts a relationship that includes board membership.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidinik, F., Behnejad, H. Comparing oxidation of aluminum by oxygen and ozone using reactive force field molecular dynamics simulations. J Nanopart Res 25, 95 (2023). https://doi.org/10.1007/s11051-023-05739-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05739-w

Keywords

Navigation