Skip to main content
Log in

The synthesis and anti-cancer efficacy of endoperoxide modified copper sulfide-ferritin nanocages as PDT and PTT agents

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) using endoperoxides is to produce toxic singlet oxygen of reactive oxygen species through heat from the endoperoxides present in the medium. Compared with conventional PDT, PDT using endoperoxides has some advantages, for instance, in the presence of endoperoxide, singlet oxygen efficiency is not affected by hypoxic environment, because endoperoxides are the source of singlet oxygen. On the other hand, the kinetic stabilities of endoperoxides are important in the body temperature. Another advantage of endoperoxides is that they can produce singlet oxygen upon warming, so regardless of the wavelength of the emitted light, they can selectively produce singlet oxygen in the heated region. The aim of this study is to synthesize core-shell nanocages (10-Aft-CuS) with the synergistic effect of both photothermal therapy (PTT) and PDT by functionalizing the surface of the Apoferritin (Aft) nanocage platform with an endoperoxide derivative and forming ultra-small CuS nanoparticles in its inner cavity for the first time. So, first of all, Aft-CuS nanoparticles were obtained by the synthesis of ultra-small CuS nanoparticles in the inner cavity of Aft nanocages. Then, the surfaces of these nanocages have been functionalized with the Compound 10, an endoperoxide anthracene derivative. While the synthesized nanoparticles in this way have the synergistic effects of PTT and PDT therapies, achieving this with a natural nanoparticle has also been tested in cell cultures in vitro and in mice with progressed melanoma in vivo by increasing the effectiveness against cancer cells. 10-Aft-CuS nanocages showed high anti-tumor efficacy against malignant melanoma in vitro and in vivo.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kolemen S, Ozdemir T, Lee D, Kim G, Karatas T, Yoon J, Akkaya E (2016) Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed 55:3606–3610

    Article  CAS  Google Scholar 

  2. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  Google Scholar 

  3. Sharman WM, Allen CM, Van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov 4(11):507–517

    CAS  Google Scholar 

  4. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975

    Article  CAS  Google Scholar 

  5. Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–331

    Article  CAS  Google Scholar 

  6. Aubry J-M, Pierlot C, Rigaudy J, Schmidt R (2003) Reversible binding of oxygen to aromatic compounds. Acc Chem Res 36(9):668–675

    Article  CAS  Google Scholar 

  7. Lee J-J, Gonçalves A, Smith BA, Palumbo R, White AG, Smith BD (2011) Singlet oxygen release and cell toxicity of a chemiluminescent squaraine rotaxane dye: implications for molecular imaging. Aust J Chem 64(5):604–610

    Article  CAS  Google Scholar 

  8. Wang L, Tang L, Liu Y, Wu H, Liu Z, Li J, Pan Y, Akkaya EU (2022) Prostate-specific membrane antigen (PSMA) targeted singlet oxygen delivery via endoperoxide tethered ligands. Chem Comm 58(12):1902–1905

    Article  CAS  Google Scholar 

  9. Wu H, Liu Z, Shao Y, Li G, Pan Y, Wang L, Akkaya EU (2022) Degradation of amyloid peptide aggregates by targeted singlet oxygen delivery from a benzothiazole functionalized naphthalene endoperoxide. Chem Comm 58(23):3747–3750

    Article  CAS  Google Scholar 

  10. Li Y, Lu W, Huang Q, Li C, Chen W (2010) Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5(8):1161–1171

    Article  CAS  Google Scholar 

  11. Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J (2011) Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS nano 5(12):9761–9771

    Article  CAS  Google Scholar 

  12. Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23(31):3542–3547

    Article  CAS  Google Scholar 

  13. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, Tian M, Liang D, Li C (2010) A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132(43):15351–15358

    Article  CAS  Google Scholar 

  14. Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R (2016) Biomineralization-inspired synthesis of copper sulfide−ferritin nanocages as cancer theranostics. ACS nano 10(3):3453–3460

    Article  CAS  Google Scholar 

  15. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta-Gen Subj 1790 7:589–599

    Article  Google Scholar 

  16. Bellini M, Mazzucchelli S, Galbiati E, Sommaruga S, Fiandra L, Truffi M, Rizzuto MA, Colombo M, Tortora P, Corsi F (2014) Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in cancer cells. J Control Release 196:184–196

    Article  CAS  Google Scholar 

  17. Thompson KJ, Fried MG, Ye Z, Boyer P, Connor JR (2002) Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci 115(10):2165–2177

    Article  CAS  Google Scholar 

  18. Zhang L, Li L, Di Penta A, Carmona U, Yang F, Schöps R, Brandsch M, Zugaza JL, Knez M (2015) H-Chain Ferritin, A natural nuclei targeting and bioactive delivery nanovector. Adv Healthc Mater 4(9):1305–1310

    Article  CAS  Google Scholar 

  19. Domınguez-Vera JM (2004) Iron(III) complexation of Desferoxamine B encapsulated in apoferritin. J Inorg Biochem 98(3):469–472

    Article  Google Scholar 

  20. Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P (2013) Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5(24):12278–12285

    Article  CAS  Google Scholar 

  21. He D, Marles-Wright J (2015) Ferritin family proteins and their use in bionanotechnology. N Biotechnol 32(6):651–657

    Article  CAS  Google Scholar 

  22. Jääskeläinen A, Soukka T, Lamminmäki U, Korpimäki T, Virta M (2009) Development of a denaturation/renaturation-based production process for ferritin nanoparticles. Biotechnol Bioeng 102(4):1012–1024

    Article  Google Scholar 

  23. Geninatti Crich S, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66(18):9196–9201

    Article  CAS  Google Scholar 

  24. Sun C, Yang H, Yuan Y, Tian X, Wang L, Guo Y, Xu L, Lei J, Gao N, Anderson GJ (2011) Controlling assembly of paired gold Clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc 133(22):8617–8624

    Article  CAS  Google Scholar 

  25. Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein apoferritin. Chem Lett 33(9):1158–1159

    Article  CAS  Google Scholar 

  26. Yang Z, Wang X, Diao H, Zhang J, Li H, Sun H, Guo Z (2007) Encapsulation of platinum anticancer drugs by apoferritin. Chem Comm 33:3453–3455

    Article  Google Scholar 

  27. Chen L, Bai G, Yang S, Yang R, Zhao G, Xu C, Leung W (2014) Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Int Food Res J 62:1147–1153

    Article  CAS  Google Scholar 

  28. Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M (2011) pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12(5):1629–1640

    Article  CAS  Google Scholar 

  29. Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S (2011) Chimeric ferritin nanocages for multiple function loading and multi modal imaging. Nano letters 11(2):814–819

    Article  CAS  Google Scholar 

  30. International Organization for Standardization (2009) ISO 10993-5: 2009-biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity, p 13

    Google Scholar 

  31. Timur SS, Yöyen-Ermiş D, Esendağlı G, Yonat S, Horzum U, Esendağlı G, Gürsoy RN (2019) Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. European Journal of Pharmaceutics and Biopharmaceutics 136:138–146

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge support from TUBITAK (Grant No. 217Z027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazli Sozmen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1562 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucukoflaz, M., Ulusoy, S., Korkmaz, B. et al. The synthesis and anti-cancer efficacy of endoperoxide modified copper sulfide-ferritin nanocages as PDT and PTT agents. J Nanopart Res 25, 62 (2023). https://doi.org/10.1007/s11051-023-05719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05719-0

Keywords

Navigation