Skip to main content
Log in

Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cancer—one of the most life-threatening human diseases—can be treated with surgery, chemotherapy, and radiotherapy. Despite the negative side effects, conventional chemotherapy which contains doxorubicin is widely used in cancer treatment. Drug delivery carriers, an alternative cancer treatment, can be used to target tumor site by vectorizing anti-cancer drug and minimize the drug quantities. Due to unique physical and chemical properties, superparamagnetic iron oxide nanoparticles are researched and documented. This work investigates how magnetic drug delivery carriers are synthesized, how the carriers are characterized and quantified, the mechanisms of drug loading/releasing of the carriers including kinetics and thermodynamic parameters, and the future research topics of magnetic drug delivery carriers for loading and releasing doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References 

  1. Senkus E, Jassem J (2011) Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev 37(4):300–311

    Article  CAS  Google Scholar 

  2. Kucharska W, Negrusz-Kawecka M, Gromkowska M (2012) Cardiotoxicity of oncological treatment in children. Adv Clin Exp Med 21(3):281–288

    Google Scholar 

  3. Doan L, Lu Y, Karatela M et al (2019) Surface modifications of superparamagnetic iron oxide nanoparticles with polylactic acid-polyethylene glycol diblock copolymer and graphene oxide for a protein delivery vehicle. Engineered Science (7):10–16. https://doi.org/10.30919/es8d510

  4. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  Google Scholar 

  5. Jin S, Ye K (2013) Targeted drug delivery for breast cancer treatment. Recent Pat Anticancer Drug Discov 8(2):143–153

    Article  CAS  Google Scholar 

  6. Minotti G, Saponiero A, Licata S et al (2001) Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin Cancer Res 7(6):1511–1515

    CAS  Google Scholar 

  7. Kalyanaraman B (2020) Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol 29:101394

    Article  CAS  Google Scholar 

  8. Hoke EM, Maylock CA, Shacter E (2005) Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin. Free Radical Biol Med 39(3):403–411

    Article  CAS  Google Scholar 

  9. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems: Doxorubicin cell and molecular biological activity. J Pharm Pharmacol 65(2):157–170

    Article  CAS  Google Scholar 

  10. Hanušová V, Boušová I, Skálová L (2011) Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev 43(4):540–557

    Article  Google Scholar 

  11. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    Article  CAS  Google Scholar 

  12. Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    Article  CAS  Google Scholar 

  13. Binaschi M, Bigioni M, Cipollone A et al (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1(2):113–130

    Article  CAS  Google Scholar 

  14. Arpino G, Ciocca DR, Weiss H et al (2005) Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 92(1):69–75

    Article  CAS  Google Scholar 

  15. Bertheau P, Plassa F, Espié M et al (2002) Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360(9336):852–854

    Article  CAS  Google Scholar 

  16. Clementi ME, Giardina B, Di Stasio E et al (2003) Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res 23(3B):2445–2450

    CAS  Google Scholar 

  17. Di Leo A, Isola J (2003) Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4(3):179–186

    Google Scholar 

  18. Doroshow JH (1986) Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun 135(1):330–335

    Article  CAS  Google Scholar 

  19. Dunkern TR, Wedemeyer I, Baumgärtner M et al (2003) Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair 2(1):49–60

    Article  CAS  Google Scholar 

  20. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588(1):94–101

    Article  CAS  Google Scholar 

  21. Guano F, Pourquier P, Tinelli S et al (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56(1):77–84

    Article  CAS  Google Scholar 

  22. Inoue A, Narumi K, Matsubara N et al (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 157(1):105–112

    Article  CAS  Google Scholar 

  23. Lage H, Dietel M (2002) Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol 128(7):349–357

    Article  CAS  Google Scholar 

  24. Lage H, Helmbach H, Dietel M et al (2000) Modulation of DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 82(2):488–491

    Article  CAS  Google Scholar 

  25. MacGrogan G, Rudolph P, de Mascarel Id I et al (2003) DNA topoisomerase IIalpha expression and the response toprimary chemotherapy in breast cancer. Br J Cancer 89(4):666–671

    Article  CAS  Google Scholar 

  26. Penault-Llorca F, Cayre A, Bouchet Mishellany F et al (2003) Induction chemotherapy for breast carcinoma: predictive markers and relation with outcome. Int J Oncol 22(6):1319–1325

    CAS  Google Scholar 

  27. Perego P, Corna E, De Cesare M et al (2001) Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem 8(1):31–37

    Article  CAS  Google Scholar 

  28. Ramachandran C, Samy TS, Huang XL et al (1993) Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells. Biochem Pharmacol 45(6):1367–1371

    Article  CAS  Google Scholar 

  29. Ruiz-Ruiz C, Robledo G, Cano E et al (2003) Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem 278(34):31667–31675

    Article  CAS  Google Scholar 

  30. Sinha BK, Katki AG, Batist G et al (1987) Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol 36(6):793–796

    Article  CAS  Google Scholar 

  31. Stearns V, Singh B, Tsangaris T et al (2003) A prospective randomized pilot study to evaluate predictors of response in serial core biopsies to single agent neoadjuvant doxorubicin or paclitaxel for patients with locally advanced breast cancer. Clin Cancer Res 9(1):124–133

    CAS  Google Scholar 

  32. Lipshultz SE, Lipsitz SR, Sallan SE et al (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. JCO 23(12):2629–2636

    Article  CAS  Google Scholar 

  33. Iarussi D, Indolfi P, Casale F et al (2005) Anthracycline-induced cardiotoxicity in children with cancer: strategies for prevention and management. Pediatr Drugs 7(2):67–76

    Article  Google Scholar 

  34. Sorensen K, Levitt GA, Bull C et al (2003) Late anthracycline cardiotoxicity after childhood cancer. Cancer 97(8):1991–1998

    Article  CAS  Google Scholar 

  35. Doyle JJ, Neugut AI, Jacobson JS et al (2005) Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. JCO 23(34):8597–8605

    Article  Google Scholar 

  36. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339(13):900–905

    Article  CAS  Google Scholar 

  37. Chlebowski RT (1979) Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med 131(5):364–368

    CAS  Google Scholar 

  38. Bristow MR, Billingham ME, Mason JW et al (1978) Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62(6):873–879

    CAS  Google Scholar 

  39. Zhao X, Zhang J, Tong N et al (2012) Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull 35(5):796–800

    Article  CAS  Google Scholar 

  40. Jacevic V, Djordjevic A, Srdjenovic B et al (2017) Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol 102(2):360–369

    Article  CAS  Google Scholar 

  41. Pugazhendhi A, Edison TNJI, Velmurugan BK et al (2018) Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci 200:26–30

    Article  CAS  Google Scholar 

  42. Nowara E, Huszno J (2013) Skin toxicity after palliative chemotherapy containing pegylated liposomal doxorubicin for ovarian cancer patients. Ann Palliat Med 2(2):71–75

    Google Scholar 

  43. Siswanto S, Arozal W, Juniantito V et al (2016) The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. HAYATI J Biosci 23(2):51–55

    Article  Google Scholar 

  44. Tangpong J, Miriyala S, Noel T et al (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia Mangostana. Neuroscience 175:292–299

    Article  CAS  Google Scholar 

  45. Su Z, Ye J, Qin Z et al (2016) Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep 5(1):18314

    Article  Google Scholar 

  46. Kim DR, Lee SY, Kim JS et al (2017) Ameliorating effect of gemigliptin on renal injury in murine adriamycin-induced nephropathy. Biomed Res Int 2017:1–10

    CAS  Google Scholar 

  47. Kabel AM (2018) Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother 97:439–449

    Article  CAS  Google Scholar 

  48. Leonard RCF, Williams S, Tulpule A et al (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet™). The Breast 18(4):218–224

    Article  CAS  Google Scholar 

  49. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480

    Article  CAS  Google Scholar 

  50. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558

    Article  Google Scholar 

  51. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    Article  CAS  Google Scholar 

  52. Kohzadi S, Najmoddin N, Baharifar H et al (2022) Functionalized SPION immobilized on graphene-oxide: anticancer and antiviral study. Diam Relat Mater 127:109149

    Article  CAS  Google Scholar 

  53. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health, Part A 41(12):2699–2711

    Article  CAS  Google Scholar 

  54. Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  Google Scholar 

  55. Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347

    Article  CAS  Google Scholar 

  56. Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  Google Scholar 

  57. Ma H-L, Qi XR, Maitani Y et al (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333(1):177–186

    Article  CAS  Google Scholar 

  58. Rahmani R, Gharanfoli M, Gholamin M et al (2020) Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram Int 46(3):3051–3058

    Article  CAS  Google Scholar 

  59. Singh N, Jenkins GJS, Asadi R et al (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1(1):5358

    Article  Google Scholar 

  60. Gao S, Wu C, Jiang H et al (2014) Size-controlled porous superparamagnetic Zn1/3Fe8/3O4 nanospheres: synthesis, properties and application for drug delivery. RSC Advances 4:20841–20846

    Article  CAS  Google Scholar 

  61. Min KA, Shin MC, Yu F et al (2013) Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano 7(3):2161–2171

    Article  CAS  Google Scholar 

  62. Min KA, Yu F, Yang VC et al (2010) Transcellular transport of heparin-coated magnetic iron oxide nanoparticles (Hep-MION) under the influence of an applied magnetic field. Pharmaceutics 2(2):119–135

    Article  CAS  Google Scholar 

  63. Domenech M, Marrero-Berrios I, Torres-Lugo M et al (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101

    Article  CAS  Google Scholar 

  64. Alexiou C, Arnold W, Klein RJ et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648

    CAS  Google Scholar 

  65. Alexiou C, Schmid RJ, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450

    Article  CAS  Google Scholar 

  66. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  67. Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36(13):R167–R181

    Article  CAS  Google Scholar 

  68. Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95(2):200–206

    Article  Google Scholar 

  69. Lübbe AS, Bergemann C, Riess H et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693

    Google Scholar 

  70. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nature Mater 12(11):991–1003

    Article  CAS  Google Scholar 

  71. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852

    Article  CAS  Google Scholar 

  72. Curcio A, Marotta R, Riedinger A et al (2012) Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem Commun 48(18):2400

    Article  CAS  Google Scholar 

  73. Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47(29):5362–5365

    Article  CAS  Google Scholar 

  74. Sanson C, Diou O, Thévenot J et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140

    Article  CAS  Google Scholar 

  75. Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11(4):1664–1670

    Article  CAS  Google Scholar 

  76. Gupta AK, Naregalkar RR, Vaidya VD et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39

    Article  CAS  Google Scholar 

  77. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573

    Article  CAS  Google Scholar 

  78. Duguet E, Vasseur S, Mornet S et al (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168

    Article  CAS  Google Scholar 

  79. Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56(1):190–200

    Article  CAS  Google Scholar 

  80. Elias A, Tourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 1:720–726

    Article  Google Scholar 

  81. Veranth JM, Kaser EG, Veranth MM et al (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4(1):2

    Article  Google Scholar 

  82. Häfeli UO, Riffle JS, Harris-Shekhawat L et al (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharmaceutics 6(5):1417–1428

    Article  Google Scholar 

  83. Stroh A, Zimmer C, Gutzeit C et al (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biol Med 36(8):976–984

    Article  CAS  Google Scholar 

  84. Sadeghiani N, Barbosa LS, Silva LP et al (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468

    Article  CAS  Google Scholar 

  85. Ejderyan N, Sanyal R, Sanyal A (2022) Stimuli-responsive polymer-coated iron oxide nanoparticles as drug delivery platforms. In Stimuli-responsive nanocarriers 133–169

  86. Basuki JS, Jacquemin A, Esser L et al (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5(7):2611–2620

    Article  CAS  Google Scholar 

  87. Herranz F, Salinas B, Groult H et al (2014) Superparamagnetic nanoparticles for atherosclerosis imaging. Nanomaterials 4(2):408–438

    Article  Google Scholar 

  88. Jensen KMØ, Andersen HL, Tyrsted C et al (2014) Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS Nano 8(10):10704–10714

    Article  CAS  Google Scholar 

  89. Kurzhals S, Zirbs R, Reimhult E (2015) Synthesis and magneto-thermal actuation of iron oxide core–PNIPAM shell nanoparticles. ACS Appl Mater Interfaces 7(34):19342–19352

    Article  CAS  Google Scholar 

  90. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1):235–237

    Article  CAS  Google Scholar 

  91. Wang J, Sun J, Sun Q et al (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118

    Article  CAS  Google Scholar 

  92. Mao B, Kang Z, Wang E et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231

    Article  CAS  Google Scholar 

  93. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  Google Scholar 

  94. Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29(10):4511–4522

    Article  CAS  Google Scholar 

  95. Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater 3(12):891–895

    Article  CAS  Google Scholar 

  96. Guardia P, Pérez-Juste J, Labarta A et al (2010) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110

    Article  CAS  Google Scholar 

  97. Riaz S, Bashir M, Naseem S (2014) Iron oxide nanoparticles prepared by modified co-precipitation method. IEEE Trans Magn 50(1):1–4

    Google Scholar 

  98. Kang YS, Risbud S, Rabolt JF et al (1996) Synthesis and characterization of nanometer-size Fe 3 O 4 and γ-Fe 2 O 3 particles. Chem Mater 8(9):2209–2211

    Article  CAS  Google Scholar 

  99. Bruce IJ, Taylor J, Todd M et al (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Article  CAS  Google Scholar 

  100. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  Google Scholar 

  101. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040

    Article  CAS  Google Scholar 

  102. Kim DK, Zhang Y, Voit W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36

    Article  CAS  Google Scholar 

  103. Marinin A (2012) Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica [Internet] [Master Thesis]. [Stockholm]: Royal Institute of Technology

  104. Muthiah M, Park IK, Cho CS (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236

    Article  CAS  Google Scholar 

  105. Gribanov NM, Bibik EE, Buzunov OV et al (1990) Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10

    Article  CAS  Google Scholar 

  106. Massart R, Cabuil VJ (1987) Chim Phys Phys-Chim Biol 84:967–973

    Article  CAS  Google Scholar 

  107. Karbarz M, Dagdelen S, Mackiewicz M et al (2023) Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release. J Mater Sci 58:4094–4114

    Article  Google Scholar 

  108. Noh K, Uthaman S, Lee CS et al (2022) Tumor intracellular microenvironment-responsive nanoparticles for magnetically targeted chemotherapy. J Ind Eng Chem 111:121–128

    Article  CAS  Google Scholar 

  109. Nguyen MP, Kim Y, Ryu D et al (2022) Targeted chemotherapy based on amplifying the reactive oxygen species of doxorubicin-loaded polyaspartamide-encapsulated iron oxide nanoparticles. ACS Appl Nano Mater 5(5):7619–7631

    Article  CAS  Google Scholar 

  110. Hadjipanayis GC, Siegel RW, editors (1994 [cited 2019 May 6].) Nanophase Materials [Internet]. Dordrecht: Springer Netherlands; Available from: https://doi.org/10.1007/978-94-011-1076-1

  111. Sjøgren CE, Briley-Saebø K, Hanson M et al (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31(3):268–272

    Article  Google Scholar 

  112. Babes L, Denizot B, Tanguy G et al (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482

    Article  CAS  Google Scholar 

  113. Tartaj P, Morales MP, Veintemillas-Verdaguer S et al (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of magnetic materials 16(5):403–482

    CAS  Google Scholar 

  114. Hyeon T, Lee SS, Park J et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  CAS  Google Scholar 

  115. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021

    Article  CAS  Google Scholar 

  116. Sato S, Murakata T, Yanagi H et al (1994) Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution. J Mater Sci 29(21):5657–5663

    Article  CAS  Google Scholar 

  117. Park J, Lee E, Hwang NM et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44(19):2872–2877

    Article  CAS  Google Scholar 

  118. Dai Z, Meiser F, Möhwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci 288(1):298–300

    Article  CAS  Google Scholar 

  119. Durães L, Costa BFO, Vasques J et al (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Mater Lett 59(7):859–863

    Article  Google Scholar 

  120. Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl Catal B 58(1):115–121

    Article  CAS  Google Scholar 

  121. Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens Actuators, B Chem 40(2):161–165

    Article  CAS  Google Scholar 

  122. Kojima K, Miyazaki M, Mizukami F et al (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1):77–81

    Article  CAS  Google Scholar 

  123. Cannas C, Gatteschi D, Musinu A et al (1998) Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J Phys Chem B 102(40):7721–7726

    Article  CAS  Google Scholar 

  124. Ennas G, Musinu A, Piccaluga G et al (1998) Characterization of iron oxide nanoparticles in an Fe2O3−SiO2 composite prepared by a sol−gel method. Chem Mater 10(2):495–502

    Article  CAS  Google Scholar 

  125. da Costa GM, De Grave E, de Bakker PMA et al (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113(2):405–412

    Article  Google Scholar 

  126. del Monte F, Morales MP, Levy D et al (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13(14):3627–3634

    Article  Google Scholar 

  127. Chanéac C, Tronc E, Jolivet JP (1995) Thermal behavior of spinel iron oxide-silica composites. Nanostruct Mater 6(5):715–718

    Article  Google Scholar 

  128. Niznansky D, Rehspringer JL, Drillon M (1994) Preparation of magnetic nanoparticles (/spl gamma/-Fe/sub 2/O/sub 3/) in the silica matrix. IEEE Trans Magn 30(2):821–823

    Article  Google Scholar 

  129. Bentivegna F, Nyvlt M, Ferré J et al (1999) Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: optical and magneto-optical properties. J Appl Phys 85(4):2270–2278

    Article  CAS  Google Scholar 

  130. Solinas S, Piccaluga G, Morales MP et al (2001) Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites. Acta Mater 49(14):2805–2811

    Article  CAS  Google Scholar 

  131. Fievet F, Lagier JP, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33:198–205

    Article  Google Scholar 

  132. Tzitzios VK, Petridis D, Zafiropoulou I et al (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294(2):e95–e98

    Article  CAS  Google Scholar 

  133. Chow GM, Kurihara LK, Kemner KM et al (1995) Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J Mater Res 10(6):1546–1554

    Article  CAS  Google Scholar 

  134. Viau G, Ravel F, Acher O et al (1994) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Appl Phys 76(10):6570–6572

    Article  CAS  Google Scholar 

  135. Viau G, Ravel F, Acher O et al (1995) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Magn Magn Mater 140–144:377–378

    Article  Google Scholar 

  136. Viau G, Fiévet-Vincent F, Fiévet F (1996) Monodisperse iron-based particles: precipitation in liquid polyols. J Mater Chem 6(6):1047–1053

    Article  CAS  Google Scholar 

  137. Viau G, Fiévet-Vincent F, Fiévet F (1996) Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 84(3):259–270

    Article  CAS  Google Scholar 

  138. Viau G, Fiévet-Vincent F, Fiévet F et al (1997) Size dependence of microwave permeability of spherical ferromagnetic particles. J Appl Phys 81(6):2749–2754

    Article  CAS  Google Scholar 

  139. Toneguzzo Ph, Acher O, Viau G et al (1997) Observations of exchange resonance modes on submicrometer sized ferromagnetic particles. J Appl Phys 81(8):5546–5548

    Article  CAS  Google Scholar 

  140. Toneguzzo P, Viau G, Acher O et al (1998) Monodisperse ferromagnetic particles for microwave applications. Adv Mater 10(13):1032–1035

    Article  CAS  Google Scholar 

  141. Toneguzzo P, Acher O, Viau G et al (1999) Static and dynamic magnetic properties of fine CoNi and FeCoNi particles synthesized by the polyol process. IEEE Trans Magn 35(5):3469–3471

    Article  CAS  Google Scholar 

  142. Yu S, Chow GM (2006) Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex. J Nanosci Nanotechnol 6(7):2135–2140

    Article  CAS  Google Scholar 

  143. Hegde MS, Larcher D, Dupont L et al (1996) Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 93(1):33–50

    Article  CAS  Google Scholar 

  144. Saravanan P, Jose TA, Thomas PJ et al (2001) Submicron particles of Co, Ni and Co-Ni alloys. Bull Mater Sci 24(5):515–521

    Article  CAS  Google Scholar 

  145. Jungk HO, Feldmann C (2000) Nonagglomerated, submicron α–Fe2O3 particles: preparation and application. J Mater Res 15(10):2244–2248

    Article  CAS  Google Scholar 

  146. Feldmann C (2001) Preparation of nanoscale pigment particles. Adv Mater 13(17):1301–1303

    Article  CAS  Google Scholar 

  147. Bianco A, Gusmano G, Montanari R et al (1994) Preparation of Ni Co metal powders by co-reduction of Ni (II) and Co(II) hydroxides for magnetoresistive sensors. Mater Lett 19(5):263–268

    Article  CAS  Google Scholar 

  148. Bianco A, Gusmano G, Montanari R et al (1995) Microstructural characterisation of Ni, Co and Ni Co fine powders for physical sensors. Thermochim Acta 269–270:117–132

    Article  Google Scholar 

  149. Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5(6):607–613

    Article  CAS  Google Scholar 

  150. Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol mediumBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge. UK. J Mater Chem 11(1):186–92

    Article  CAS  Google Scholar 

  151. Yu W, Wang Y, Liu H et al (1996) Preparation and characterization of polymer-protected PtCo bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde. J Mol Catal A: Chem 112(1):105–113

    Article  CAS  Google Scholar 

  152. Kooli F, Rives V, Jones W (1997) Reduction of Ni2+−Al3+ and Cu2+−Al3+ layered double hydroxides to metallic Ni0 and Cu0 via polyol treatment. Chem Mater 9(10):2231–2235

    Article  CAS  Google Scholar 

  153. Yamaguchi T, Kitajima K (1998) Reduction of interlayer Co2+ ions in fluorine mica using diethylene glycol. J Mater Sci 33(3):653–657

    Article  CAS  Google Scholar 

  154. Toneguzzo Ph, Viau G, Acher O et al (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35(15):3767–3784

    Article  CAS  Google Scholar 

  155. Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12(10):3123–3132

    Article  CAS  Google Scholar 

  156. Wu M, He H, Zhao Z et al (2000) Preparation of magnetic cobalt fibres and their microwave properties. J Phys D: Appl Phys 33(22):2927–2930

    Article  CAS  Google Scholar 

  157. Elumalai P, Vasan HN, Verelst M et al (2002) Synthesis and characterization of sub-micron size Co–Ni alloys using malonate as precursor. Mater Res Bull 37(2):353–363

    Article  CAS  Google Scholar 

  158. Teranishi T, Miyake M (1999) Novel synthesis of monodispersed Pd/Ni nanoparticles. Chem Mater 11(12):3414–3416

    Article  CAS  Google Scholar 

  159. Jézéquel D, Guenot J, Jouini N et al (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(1):77–83

    Article  Google Scholar 

  160. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370

    Article  CAS  Google Scholar 

  161. Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17(4):758–766

    Article  CAS  Google Scholar 

  162. Joseyphus RJ, Kodama D, Matsumoto T et al (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2, Part 3):2393–2395

    Article  CAS  Google Scholar 

  163. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633

    Article  CAS  Google Scholar 

  164. Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147

    Article  CAS  Google Scholar 

  165. Khan HR, Petrikowski K (2000) Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J Magn Magn Mater 215–216:526–528

    Article  Google Scholar 

  166. Fürstner A, editor (2008) Active metals: preparation, characterization, applications. John Wiley & Sons

  167. Pecharromán C, González-Carreño T, Iglesias JE (1995) The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys Chem Minerals 22(1):21–29

    Article  Google Scholar 

  168. González-Carreño T, Morales MP, Gracia M et al (1993) Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater Lett 18(3):151–155

    Article  Google Scholar 

  169. Veintemillas-Verdaguer S, Morales MP, Serna CJ (1998) Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis. Mater Lett 35(3):227–231

    Article  CAS  Google Scholar 

  170. Morales MP, Bomati-Miguel O, Pérez de Alejo R et al (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266(1):102–109

    Article  CAS  Google Scholar 

  171. Veintemillas-Verdaguer S, Morales del Puerto M, Bomati-Miguel O et al (2004) Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J Phys D: Appl Phys 37(15):2054–2059

    Article  CAS  Google Scholar 

  172. Alexandrescu R, Morjan I, Voicu I et al (2005) Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis. Appl Surf Sci 248(1):138–146

    Article  CAS  Google Scholar 

  173. Julián-López B, Boissière C, Chanéac C et al (2007) Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J Mater Chem 17(16):1563–1569

    Article  Google Scholar 

  174. Osuna J, de Caro D, Amiens C et al (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100(35):14571–14574

    Article  CAS  Google Scholar 

  175. Verelst M, Ely TO, Amiens C et al (1999) Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem Mater 11(10):2702–2708

    Article  CAS  Google Scholar 

  176. Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38(12):1788–1791

    Article  CAS  Google Scholar 

  177. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  178. Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19(2):145–148

    Article  CAS  Google Scholar 

  179. Puntes VF, Krishnan KM, Alivisatos P (2001) Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles. Appl Phys Lett 78(15):2187–2189

    Article  CAS  Google Scholar 

  180. Yin JS, Wang ZL (1997) Ordered self-assembling of tetrahedral oxide nanocrystals. Phys Rev Lett 79(13):2570–2573

    Article  CAS  Google Scholar 

  181. Rotstein HG, Tannenbaum R (2002) Cluster coagulation and growth limited by surface interactions with polymers. J Phys Chem B 106(1):146–151

    Article  CAS  Google Scholar 

  182. Ely TO, Amiens C, Chaudret B et al (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11(3):526–529

    Article  CAS  Google Scholar 

  183. Kataby G, Prozorov T, Koltypin Yu et al (1997) Self-assembled monolayer coatings on amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir 13(23):6151–6158

    Article  CAS  Google Scholar 

  184. Sidorov SN, Bronstein LM, Davankov VA et al (1999) Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: control of nanoparticle growth and morphology. Chem Mater 11(11):3210–3215

    Article  CAS  Google Scholar 

  185. Park SJ, Kim S, Lee S et al (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582

    Article  CAS  Google Scholar 

  186. Abu Mukh-Qasem R, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494

    Article  CAS  Google Scholar 

  187. Hee Kim E, Sook Lee H, Kook Kwak B et al (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    Article  Google Scholar 

  188. Suslick KS, Choe SB, Cichowlas AA et al (1991) Sonochemical synthesis of amorphous iron. Nature 353(6343):414–416

    Article  CAS  Google Scholar 

  189. Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179

    Article  CAS  Google Scholar 

  190. Suslick KS, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118(47):11960–11961

    Article  CAS  Google Scholar 

  191. Suslick KS, Hyeon T, Fang M et al (1995) Sonochemical synthesis of nanostructured catalysts. Mater Sci Eng, A 204(1):186–192

    Article  Google Scholar 

  192. Bellissent R, Galli G, Hyeon T et al (1996) Magnetic and structural properties of amorphous transition metals and alloys. J Non-Cryst Solids 205–207:656–659

    Article  Google Scholar 

  193. Shafi KVPM, Gedanken A, Goldfarb RB et al (1997) Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J Appl Phys 81(10):6901–6905

    Article  CAS  Google Scholar 

  194. Katabi G, Koltypin Yu, Cao X et al (1996) Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J Cryst Growth 166(1):760–762

    Article  CAS  Google Scholar 

  195. Ramesh S, Cohen Y, Aurbach D et al (1998) Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chem Phys Lett 287(3):461–467

    Article  CAS  Google Scholar 

  196. Gibson CP, Putzer KJ (1995) Synthesis and characterization of anisometric cobalt nanoclusters. Science 267(5202):1338–1340

    Article  CAS  Google Scholar 

  197. Koltypin Yu, Katabi G, Cao X et al (1996) Sonochemical preparation of amorphous nickel. J Non-Cryst Solids 201(1):159–162

    Article  CAS  Google Scholar 

  198. Shafi KVPM, Gedanken A, Prozorov R (1998) Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. J Mater Chem 8(3):769–773

    Article  CAS  Google Scholar 

  199. Kataby G, Koltypin Y, Rothe J et al (1998) The adsorption of monolayer coatings on iron nanoparticles: Mössbauer spectroscopy and XANES results. Thin Solid Films 333(1):41–49

    Article  CAS  Google Scholar 

  200. Shafi KVPM, Koltypin Y, Gedanken A et al (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B 101(33):6409–6414

    Article  CAS  Google Scholar 

  201. Shafi KVPM, Ulman A, Yan X et al (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097

    Article  CAS  Google Scholar 

  202. Kumar RV, Koltypin Y, Cohen YS et al (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10(5):1125–1129

    Article  CAS  Google Scholar 

  203. Kumar RV, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12(8):2301–2305

    Article  CAS  Google Scholar 

  204. Vijayakumar R, Koltypin Yu, Felner I et al (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286(1):101–105

    Article  Google Scholar 

  205. Paul KG, Frigo TB, Groman JY et al (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15(2):394–401

    Article  CAS  Google Scholar 

  206. Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2):480–487

    Article  Google Scholar 

  207. Juang JH, Wang JJ, Shen CR et al (2010) Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles. Transpl Proc 42(6):2104–2108

    Article  CAS  Google Scholar 

  208. Bautista MC, Bomati-Miguel O, Zhao X et al (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15(4):S154–S159

    Article  CAS  Google Scholar 

  209. Ahmad T, Bae H, Rhee I et al (2012) Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 12(3):969–974

    Article  Google Scholar 

  210. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  211. Elfick APD, Green SM, McCaskie AW et al (2004) Opsonization of polyethylene wear particles regulates macrophage and osteoblast responses in vitro. J Biomed Mater Res Part B: Appl Biomater 71B(2):244–251

    Article  CAS  Google Scholar 

  212. Saba TM, Di Luzio NR (1965) Kupffer cell phagocytosis and metabolism of a variety of particles as a function of opsonization. J Reticuloendothel Soc 2(5):437–453

    CAS  Google Scholar 

  213. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  CAS  Google Scholar 

  214. Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61(7):1303–1313

    Article  CAS  Google Scholar 

  215. Assaraf YG, Brozovic A, Gonçalves AC et al (2019) The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updates 46:100645

    Article  Google Scholar 

  216. Barbault-Foucher S, Gref R, Russo P et al (2002) Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83(3):365–375

    Article  CAS  Google Scholar 

  217. Vismara E, Bongio C, Coletti A et al (2017) Albumin and hyaluronic acid-coated superparamagnetic iron oxide nanoparticles loaded with paclitaxel for biomedical applications. Molecules 22(7):1030

    Article  Google Scholar 

  218. Kim DK, Zhang Y, Kehr J et al (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261

    Article  CAS  Google Scholar 

  219. Tamaura Y, Takahashi K, Kodera Y et al (1986) Chemical modification of lipase with ferromagnetic modifier ? A Ferromagnetic-modified lipase. Biotechnol Lett 8(12):877–880

    Article  CAS  Google Scholar 

  220. Shultz MD, Calvin S, Fatouros PP et al (2007) Enhanced ferrite nanoparticles as MRI contrast agents. J Magn Magn Mater 311(1):464–468

    Article  CAS  Google Scholar 

  221. Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15

    Article  CAS  Google Scholar 

  222. Yokoi H, Kantoh T (1993) Thermal decomposition of the iron(III) hydroxide and magnetite composites of poly(vinyl alcohol). Preparation of magnetite and metallic iron particles. BCSJ 66(5):1536–1541

    Article  CAS  Google Scholar 

  223. Sairam M, Naidu BVK, Nataraj SK et al (2006) Poly(vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran. J Membr Sci 283(1–2):65–73

    Article  CAS  Google Scholar 

  224. Schöpf B, Neuberger T, Schulze K et al (2005) Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep. J Magn Magn Mater 293(1):411–418

    Article  Google Scholar 

  225. Finotelli PV, Morales MA, Rocha-Leão MH et al (2004) Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng, C 24(5):625–629

    Article  Google Scholar 

  226. Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf, A 179(1):93–102

    Article  CAS  Google Scholar 

  227. Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):7206–7211

    Article  CAS  Google Scholar 

  228. Velusamy P, Chia-Hung S, Shritama A et al (2016) Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens. J Taiwan Inst Chem Eng 59:450–456

    Article  CAS  Google Scholar 

  229. Chang PR, Yu J, Ma X et al (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohyd Polym 83(2):640–644

    Article  CAS  Google Scholar 

  230. Gaihre B, Khil MS, Lee DR et al (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1):180–189

    Article  CAS  Google Scholar 

  231. Naha PC, Liu Y, Hwang G et al (2019) Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13(5):4960–4971

    Article  CAS  Google Scholar 

  232. Tyukova IS, Safronov AP, Kotel’nikova AP et al (2014) Electrostatic and steric mechanisms of iron oxide nanoparticle sol stabilization by chitosan. Polym Sci Ser A 56(4):498–504

    Article  CAS  Google Scholar 

  233. Khandhar AP, Keselman P, Kemp SJ et al (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3):1299–1306

    Article  CAS  Google Scholar 

  234. Walker M, Will I, Pratt A et al (2020) Magnetically triggered release of entrapped bioactive proteins from thermally responsive polymer-coated iron oxide nanoparticles for stem-cell proliferation. ACS Appl Nano Mater 3(6):5008–5013

    Article  CAS  Google Scholar 

  235. Arsianti M, Lim M, Marquis CP et al (2010) Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir 26(10):7314–7326

    Article  CAS  Google Scholar 

  236. Zhang M, O’Connor CJ (2007) Synthesis and characterization of PMMA coated magnetite nanocomposites by emulsion polymerization. MRS Online Proceedings Library (OPL) MRS Online Proceedings Library (OPL) (1032):1032–I14

  237. Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30(50):15266–15276

    Article  CAS  Google Scholar 

  238. Zhang Y, Du B, Wu Y et al (2022) Fe3O4@PDA@PEI core-shell microspheres as a novel magnetic sorbent for the rapid and broad-spectrum separation of bacteria in liquid phase. Materials 15(6):2039

    Article  CAS  Google Scholar 

  239. Li GY, Jiang YR, Huang KL et al (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compounds 466(1):451–456

    Article  CAS  Google Scholar 

  240. Amini-Fazl MS, Mohammadi R, Kheiri K (2019) 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol 132:506–513

    Article  CAS  Google Scholar 

  241. Bixner O, Kurzhals S, Virk M et al (2016) Triggered release from thermoresponsive polymersomes with superparamagnetic membranes. Materials 9(1):29

    Article  Google Scholar 

  242. Shin JR, An GS, Choi SC (2021) Influence of carboxylic modification using polyacrylic acid on characteristics of Fe3O4 nanoparticles with cluster structure. Processes 9(10):1795

    Article  CAS  Google Scholar 

  243. Sarkar S, Guibal E, Quignard F et al (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14(2):715

    Article  Google Scholar 

  244. Seabra AB, Paula AJ, de Lima R et al (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168

    Article  CAS  Google Scholar 

  245. Bian Y, Bian ZY, Zhang JX et al (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329:269–275

    Article  CAS  Google Scholar 

  246. Gao P, Liu M, Tian J et al (2016) Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization. Appl Surf Sci 378:22–29

    Article  CAS  Google Scholar 

  247. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  248. Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364

    Article  CAS  Google Scholar 

  249. Ayazi H, Akhavan O, Raoufi M et al (2020) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf, B 186:110712

    Article  CAS  Google Scholar 

  250. Depan D, Shah J, Misra RDK (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng, C 31(7):1305–1312

    Article  CAS  Google Scholar 

  251. Ma D, Lin J, Chen Y et al (2012) In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8):3001–3007

    Article  CAS  Google Scholar 

  252. Konios D, Stylianakis MM, Stratakis E et al (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112

    Article  CAS  Google Scholar 

  253. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  Google Scholar 

  254. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025

    Article  CAS  Google Scholar 

  255. Wang Z, Liu CJ (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293

    Article  CAS  Google Scholar 

  256. Li X, Zhu H, Feng J et al (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497

    Article  CAS  Google Scholar 

  257. Baaziz W, Truong-Phuoc L, Duong-Viet C et al (2014) Few layer graphene decorated with homogeneous magnetic Fe3O4 nanoparticles with tunable covering densities. J Mater Chem A 2(8):2690

    Article  CAS  Google Scholar 

  258. Pileni MP, Duxin N (2000) Micelle technology for magnetic nanosized alloys and composites. ChemTech 30(2):25–33

    CAS  Google Scholar 

  259. Wagle DV, Rondinone AJ, Woodward JD et al (2017) Polyol synthesis of magnetite nanocrystals in a thermostable ionic liquid. Cryst Growth Des 17(4):1558–1567

    Article  CAS  Google Scholar 

  260. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66–73

    Article  Google Scholar 

  261. Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973

    Article  CAS  Google Scholar 

  262. Alcalá MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ionics 177(9):955–960

    Article  Google Scholar 

  263. Gushikem Y, Rosatto SS (2001) Metal oxide thin films grafted on silica gel surfaces: recent advances on the analytical application of these materials. J Braz Chem Soc 12(6):695–705

    Article  CAS  Google Scholar 

  264. Woo K, Hong J, Ahn JP (2005) Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J Magn Magn Mater 293(1):177–181

    Article  CAS  Google Scholar 

  265. van Ewijk GA, Vroege GJ, Philipse AP (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201(1):31–33

    Article  Google Scholar 

  266. Ma D, Guan J, Dénommée S et al (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7):1920–1927

    Article  CAS  Google Scholar 

  267. Lesnikovich AI, Shunkevich TM, Naumenko VN et al (1990) Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J Magn Magn Mater 85(1):14–16

    Article  CAS  Google Scholar 

  268. Sun Y, Duan L, Guo Z et al (2005) An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J Magn Magn Mater 285(1):65–70

    Article  CAS  Google Scholar 

  269. Im SH, Herricks T, Lee YT et al (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 401(1):19–23

    Article  CAS  Google Scholar 

  270. Xie L, Jiang R, Zhu F et al (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399

    Article  CAS  Google Scholar 

  271. Yang HH, Zhang SQ, Chen XL et al (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321

    Article  CAS  Google Scholar 

  272. Lyon JL, Fleming DA, Stone MB et al (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723

    Article  CAS  Google Scholar 

  273. Lin J, Zhou W, Kumbhar A et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31

    Article  CAS  Google Scholar 

  274. Kim J, Park S, Lee JE et al (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem 118(46):7918–7922

    Article  Google Scholar 

  275. Mekonnen TW, Birhan YS, Andrgie AT et al (2019) Encapsulation of gadolinium ferrite nanoparticle in generation 45 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids and Surfaces B: Biointerfaces 184:110531

    Article  CAS  Google Scholar 

  276. Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51(3):480–486

    Article  CAS  Google Scholar 

  277. Shepherd PG, Popplewell J, Charles SW (1970) A method of producing ferrofluid with gadolinium particles. J Phys D: Appl Phys 3(12):1985–1986

    Article  CAS  Google Scholar 

  278. Xu HK, Sorensen CM, Klabunde KJ et al (1992) Aerosol synthesis of gadolinium iron garnet particles. J Mater Res 7(3):712–716

    Article  CAS  Google Scholar 

  279. Arora HC, Jensen MP, Yuan Y et al (2012) Nanocarriers enhance doxorubicin uptake in drug-resistant ovarian cancer cells. Can Res 72(3):769–778

    Article  CAS  Google Scholar 

  280. Fang C, Kievit FM, Veiseh O et al (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162(1):233–241

    Article  CAS  Google Scholar 

  281. Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int J Pharm 363(1–2):170–176

    Article  CAS  Google Scholar 

  282. Majeed MI, Lu Q, Yan W et al (2013) Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J Mater Chem B 1(22):2874

    Article  CAS  Google Scholar 

  283. Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng, C 30(3):484–490

    Article  CAS  Google Scholar 

  284. An GS, Chae DH, Hur JU et al (2018) Hollow-structured Fe3O4@SiO2 nanoparticles: novel synthesis and enhanced adsorbents for purification of plasmid DNA. Ceram Int 44(15):18791–18795

    Article  CAS  Google Scholar 

  285. Lee HY, Lee SH, Xu C et al (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19(16):165101

    Article  Google Scholar 

  286. Kopanja L, Kralj S, Zunic D et al (2016) Core–shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. Ceram Int 42(9):10976–10984

    Article  CAS  Google Scholar 

  287. Kumar A, Sharma G, Naushad M et al (2015) SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187

    Article  CAS  Google Scholar 

  288. Wanna Y, Porntheerapat S, Pratontep S, Pui-ngam R et al (2016) Preparation and characterization of PEG bis(amine) grafted PMMA/SPION composite nanoparticles. Adv Mater Lett 7(3):176–80

    Article  CAS  Google Scholar 

  289. Sharma G, Kumar A, Chauhan C et al (2017) Pectin-crosslinked-guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol. Sustain Chem Pharm 6:96–106

    Article  Google Scholar 

  290. López J, González-Bahamón LF, Prado J et al (2012) Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater 324(4):394–402

    Article  Google Scholar 

  291. Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Co1−xZnxFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313(2):293–299

    Article  CAS  Google Scholar 

  292. Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf, A 431:18–26

    Article  CAS  Google Scholar 

  293. Sodipo BK, Aziz AA (2014) A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane. Beilstein J Nanotechnol 5:1472–1476

    Article  Google Scholar 

  294. Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250

    Article  CAS  Google Scholar 

  295. Ao L, Wang B, Liu P et al (2014) A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale 6(18):10710

    Article  CAS  Google Scholar 

  296. Cheng J, Zheng Z, Tang W et al (2022) A new strategy for stem cells therapy for erectile dysfunction: adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles. Investig Clin Urol 63(3):359–367

    Article  Google Scholar 

  297. Wang C, Zhang Z, Chen B et al (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341

    Article  CAS  Google Scholar 

  298. Wang C, Huang J, Zhang Y et al (2021) Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf, B 204:111789

    Article  CAS  Google Scholar 

  299. Papadimitriou S, Bikiaris D (2009) Novel self-assembled core–shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release 138(2):177–184

    Article  CAS  Google Scholar 

  300. Gautier J, Munnier E, Paillard A et al (2012) A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 423(1):16–25

    Article  CAS  Google Scholar 

  301. Zhang Q, Li W, Kong T et al (2013) Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon 51:164–172

    Article  Google Scholar 

  302. Chen L, Xue Y, Xia X et al (2015) A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J Mater Chem B 3(46):8949–8962

    Article  CAS  Google Scholar 

  303. Liu Z, Sun X, Nakayama-Ratchford N et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Article  Google Scholar 

  304. Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  Google Scholar 

  305. Liu L, Luo XB, Ding L et al (2019) Application of nanotechnology in the removal of heavy metal from water. Nanomaterials for the removal of pollutants and resource reutilization. Elsevier 83–147

  306. Ai L, Zhang C, Liao F et al (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290

    Article  CAS  Google Scholar 

  307. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  308. Başar CA (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135(1):232–241

    Article  Google Scholar 

  309. Bayazit ŞS (2014) Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep Sci Technol 49(9):1389–1400

    Article  CAS  Google Scholar 

  310. Ghaedi M, Haghdoust S, Kokhdan SN et al (2012) Comparison of activated carbon, multiwalled carbon nanotubes, and cadmium hydroxide nanowire loaded on activated carbon as adsorbents for kinetic and equilibrium study of removal of safranine O. Spectrosc Lett 45(7):500–510

    Article  CAS  Google Scholar 

  311. Zhou X (2020) Correction to the calculation of Polanyi potential from Dubinnin-Rudushkevich equation. J Hazard Mater 384:121101

    Article  CAS  Google Scholar 

  312. Hsieh CT, Teng H (2000) Langmuir and Dubinin-Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions. J Chem Technol Biotechnol 75(11):1066–1072

    Article  CAS  Google Scholar 

  313. Chabani M, Amrane A, Bensmaili A (2006) Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem Eng J 125(2):111–117

    Article  CAS  Google Scholar 

  314. Özcan A, Özcan AS, Tunali S et al (2005) Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. J Hazard Mater 124(1):200–208

    Article  Google Scholar 

  315. Helfferich FG (1995) Ion exchange. Courier Corporation 642

  316. Onyango MS, Kojima Y, Aoyi O et al (2004) Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279(2):341–350

    Article  CAS  Google Scholar 

  317. Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143(1):354–361

    Article  CAS  Google Scholar 

  318. Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 165(1):52–62

    Article  CAS  Google Scholar 

  319. Ghaedi M, Sadeghian B, Pebdani AA et al (2012) Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 187:133–141

    Article  CAS  Google Scholar 

  320. Ertugay M, Certel M, Gurses A (2000) Moisture adsorption isotherms of Tarhana at 25 oC and 35 oC and the investigation of fitness of various isotherm equations to moisture sorption data of Tarhana. J Sci Food Agric 80(14):2001–2004

    Article  CAS  Google Scholar 

  321. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–59

    Article  Google Scholar 

  322. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268

    Article  CAS  Google Scholar 

  323. Yao Y, Xu F, Chen M et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Biores Technol 101(9):3040–3046

    Article  CAS  Google Scholar 

  324. Sharma P, Kaur R, Baskar C et al (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1):249–257

    Article  CAS  Google Scholar 

  325. Karaer H, Kaya İ (2016) Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater 232:26–38

    Article  CAS  Google Scholar 

  326. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics 1. J Am Chem Soc 69(11):2836–48

    Article  CAS  Google Scholar 

  327. Hameed BH, El-Khaiary MI (2008) Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J Hazard Mater 159(2):574–579

    Article  CAS  Google Scholar 

  328. Srivastava V, Weng CH, Singh VK et al (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56(4):1414–1422

    Article  CAS  Google Scholar 

  329. Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136(2):164–172

    Article  CAS  Google Scholar 

  330. Zhang H, Xue Y, Huang J et al (2015) Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. J Mater Sci 50(6):2429–2442

    Article  CAS  Google Scholar 

  331. He X, Wu X, Cai X et al (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28(32):11929–11938

    Article  CAS  Google Scholar 

  332. Zhu L, Wang D, Wei X et al (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169(3):228–238

    Article  CAS  Google Scholar 

  333. Guo X, Xue L, Lv W et al (2015) Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin. New J Chem 39(9):7340–7347

    Article  CAS  Google Scholar 

  334. Chang Y, Liu N, Chen L et al (2012) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 22(19):9594–9601

    Article  CAS  Google Scholar 

  335. Mu B, Liu P, Dong Y et al (2010) Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci, Part A: Polym Chem 48(14):3135–3144

    Article  CAS  Google Scholar 

  336. Du P, Zeng J, Mu B et al (2013) Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release. Mol Pharmaceutics 10(5):1705–1715

    Article  CAS  Google Scholar 

  337. Yang HY, Jang MS, Gao GH et al (2016) pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale 8(25):12588–12598

    Article  CAS  Google Scholar 

  338. Li X, Zeng D, Ke P et al (2020) Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv 10(12):7163–7169

    Article  CAS  Google Scholar 

  339. Marcelo G, Muñoz-Bonilla A, Rodríguez-Hernández J et al (2013) Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polym Chem 4(3):558–567

    Article  CAS  Google Scholar 

  340. Gamcsik MP, Kasibhatla MS, Teeter SD et al (2012) Glutathione levels in human tumors. Biomarkers 17(8):671–691

    Article  CAS  Google Scholar 

  341. Tang Z, Zhang L, Wang Y et al (2016) Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater 42:232–246

    Article  CAS  Google Scholar 

  342. Matsumoto A, Cabral H, Sato N et al (2010) Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem 122(32):5626–5629

    Article  Google Scholar 

  343. Ding M, Zeng X, He X et al (2014) Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromol 15(8):2896–2906

    Article  CAS  Google Scholar 

  344. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567

    Article  CAS  Google Scholar 

  345. Xu F, Zhao T, Wang S et al (2016) Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method. J Microencapsul 33(2):191–198

    Article  CAS  Google Scholar 

  346. Xu F, Zhao T, Yang T et al (2016) Fabrication of folic acid functionalized pH-responsive and thermosensitive magnetic chitosan microcapsules via a simple sonochemical method. Colloids Surf, A 490:22–29

    Article  CAS  Google Scholar 

  347. Cui X, Guan X, Zhong S et al (2017) Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrason Sonochem 38:145–153

    Article  CAS  Google Scholar 

  348. Yang HY, Jang MS, Li Y et al (2017) Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging. ACS Appl Mater Interfaces 9(22):19184–19192

    Article  CAS  Google Scholar 

  349. Huang RY, Chiang PH, Hsiao WC et al (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31(23):6523–6531

    Article  CAS  Google Scholar 

  350. Peng S, Wang QY, Xiao X et al (2020) Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int 69(2):206–214

    Article  CAS  Google Scholar 

  351. Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biologic activity and clinical implications. JCO 18(5):1135–1135

    Article  CAS  Google Scholar 

  352. Stern R (2008) Hyaluronidases in cancer biology. In Hyaluronan in cancer biology.  Academic Press 207–220

  353. Götte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Can Res 66(21):10233–10237

    Article  Google Scholar 

  354. Deng L, Wang G, Ren J et al (2012) Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Adv 2(33):12909–12914

    Article  CAS  Google Scholar 

  355. Kang T, Li F, Baik S et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114

    Article  CAS  Google Scholar 

  356. Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643

    Article  CAS  Google Scholar 

  357. Chen S, Li Y, Guo C et al (2007) Temperature-responsive magnetite/PEO−PPO−PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23(25):12669–12676

    Article  CAS  Google Scholar 

  358. Wadajkar AS, Menon JU, Tsai YS et al (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34(14):3618–3625

    Article  CAS  Google Scholar 

  359. Heidarinasab A, Ahmad Panahi H, Faramarzi M et al (2016) Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. Mater Sci Eng, C 67:42–50

    Article  CAS  Google Scholar 

  360. Peralta ME, Jadhav SA, Magnacca G et al (2019) Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J Colloid Interface Sci 544:198–205

    Article  CAS  Google Scholar 

  361. Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A et al (2019) Doxorubicin-loaded thermoresponsive superparamagnetic nanocarriers for controlled drug delivery and magnetic hyperthermia applications. ACS Appl Mater Interfaces 11(34):30610–30620

    Article  CAS  Google Scholar 

  362. Aqil A, Vasseur S, Duguet E et al (2008) Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia. J Mater Chem 18(28):3352–3360

    Article  CAS  Google Scholar 

  363. Talelli M, Rijcken CJF, Lammers T et al (2009) Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25(4):2060–2067

    Article  CAS  Google Scholar 

  364. Mai BT, Balakrishnan PB, Barthel MJ et al (2019) Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl Mater Interfaces 11(6):5727–5739

    Article  Google Scholar 

  365. Borlido L, Moura L, Azevedo AM et al (2013) Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnol J 8(6):709–717

    Article  CAS  Google Scholar 

  366. Shamim N, Hong L, Hidajat K et al (2006) Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of Bovine Serum Albumin. J Colloid Interface Sci 304(1):1–8

    Article  CAS  Google Scholar 

  367. Paulus AS, Heinzler R, Ooi HW et al (2015) Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl Mater Interfaces 7(26):14279–14287

    Article  CAS  Google Scholar 

  368. Nagaoka H, Sato Y, Xie X et al (2011) Coupling stimuli-responsive magnetic nanoparticles with antibody–antigen detection in immunoassays. Anal Chem 83(24):9197–9200

    Article  CAS  Google Scholar 

  369. Jauregui R, Srinivasan S, Vojtech LN et al (2018) Temperature-responsive magnetic nanoparticles for enabling affinity separation of extracellular vesicles. ACS Appl Mater Interfaces 10(40):33847–33856

    Article  CAS  Google Scholar 

  370. Krishnan BP, Prieto-López LO, Hoefgen S et al (2020) Thermomagneto-responsive smart biocatalysts for malonyl-coenzyme a aynthesis. ACS Appl Mater Interfaces 12(18):20982–20990

    Article  CAS  Google Scholar 

  371. Zhu K, Deng Z, Liu G et al (2017) Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (SPION) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 50(3):1113–1125

    Article  CAS  Google Scholar 

  372. Phan TTV, Bharathiraja S, Nguyen VT et al (2017) Polypyrrole–methylene blue nanoparticles as a single multifunctional nanoplatform for near-infrared photo-induced therapy and photoacoustic imaging. RSC Adv 7(56):35027–35037

    Article  CAS  Google Scholar 

  373. Sahoo B, Devi KSP, Banerjee R et al (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5(9):3884–3893

    Article  CAS  Google Scholar 

  374. Sundaresan V, Menon JU, Rahimi M et al (2014) Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm 466(1):1–7

    Article  CAS  Google Scholar 

  375. Panahi HA, Tavanaei Y, Moniri E et al (2014) Synthesis and characterization of poly[N-isopropylacrylamide-co-1-(N, N-bis-carboxymethyl)amino-3-allylglycerol] grafted to magnetic nano-particles for the extraction and determination of fluvoxamine in biological and pharmaceutical samples. J Chromatogr A 1345:37–42

    Article  CAS  Google Scholar 

  376. Bhattacharya D, Behera B, Kumar Sahu S et al (2016) Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem 40(1):545–557

    Article  CAS  Google Scholar 

  377. DuttaParidaMaiti SSC et al (2016) Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 467:70–80

    Article  Google Scholar 

  378. Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8(24):12152–61

    Article  CAS  Google Scholar 

  379. Ghamkhari A, Ghorbani M, Aghbolaghi S (2018) A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artific Cells, Nanomedid3e, and Biotechnology 46(sup3):S911–S921

    Article  Google Scholar 

  380. Majewski AP, Schallon A, Jérôme V et al (2012) Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromol 13(3):857–866

    Article  CAS  Google Scholar 

  381. Zhou X, Wang L, Xu Y et al (2018) A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv 8(18):9812–9821

    Article  CAS  Google Scholar 

  382. Ling D, ParkPark WSJ et al (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655

    Article  CAS  Google Scholar 

  383. Zou H, Yuan W (2014) Temperature- and redox-responsive magnetic complex micelles for controlled drug release. J Mater Chem B 3(2):260–269

    Article  Google Scholar 

  384. Zeng J, Du P, Liu L et al (2015) Superparamagnetic reduction/pH/temperature multistimuli-responsive nanoparticles for targeted and controlled antitumor drug delivery. Mol Pharmaceutics 12(12):4188–4199

    Article  CAS  Google Scholar 

  385. Vyas D, Lopez-Hisijos N, Gandhi S et al (2015) Doxorubicin-hyaluronan conjugated super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, IL-6 release and NF-kappaB activity in human MDA-MB-231 breast cancer cells. Journal of nanoscience and nanotechnology 15(9):6413–22

    Article  CAS  Google Scholar 

  386. Nosrati R, Abnous K, Alibolandi M et al (2021) Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 11(1):13065

    Article  CAS  Google Scholar 

  387. Yar Y, Khodadust R, Akkoc Y et al (2018) Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. J Mater Chem B 6(2):289–300

    Article  CAS  Google Scholar 

  388. Xue W, Liu XL, Ma H et al (2018) AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B 6(15):2289–2303

    Article  CAS  Google Scholar 

  389. Yang HM, Oh BC, Kim JH et al (2011) Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf, A 391(1–3):208–215

    Article  CAS  Google Scholar 

  390. Chen J, Shi M, Liu P et al (2014) Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 35(4):1240–1248

    Article  CAS  Google Scholar 

  391. Huang L, Ao L, Wang W et al (2015) Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chemical Communications 51(18):3923–3926

    Article  CAS  Google Scholar 

  392. Peng N, Wu B, Wang L et al (2016) High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci 4(12):1802–1813

    Article  CAS  Google Scholar 

  393. Rudge SR, Kurtz TL, Vessely CR et al (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21(14):1411–1420

    Article  CAS  Google Scholar 

  394. Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharmaceutics 2(3):194–205

    Article  CAS  Google Scholar 

  395. Ma WF, Wu KY, Tang J et al (2012) Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin. J Mater Chem 22(30):15206

    Article  CAS  Google Scholar 

  396. Chiang WH, Huang WC, Chang CW et al (2013) Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Control Release 168(3):280–288

    Article  CAS  Google Scholar 

  397. Yang X, Wang Y, Huang X et al (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448–3454

    Article  CAS  Google Scholar 

  398. Guo Q, Jia, Yuan et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. International journal of nanomedicine 1697–1708

  399. Zhu Y, Ikoma T, Hanagata N et al (2010) Rattle-type Fe 3 O 4 @SiO 2 hollow mesoporous spheres as carriers for drug delivery. Small 6(3):471–478

    Article  CAS  Google Scholar 

  400. Natu MV, de Sousa HC, Gil MH (2010) Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int J Pharm 397(1–2):50–58

    Article  CAS  Google Scholar 

  401. Lin Z, Gao W, Hu H et al (2014) Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 174:161–170

    Article  CAS  Google Scholar 

  402. Benita S, Barkai A, Pathak YV (1990) Effect of drug loading extent on the in vitro release kinetic behaviour of nifedipine from polyacrylate microspheres. J Control Release 12(3):213–222

    Article  CAS  Google Scholar 

  403. Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18):2915–2922

    Article  CAS  Google Scholar 

  404. van Sluis R, Bhujwalla ZM, Raghunand N et al (1999) In vivo imaging of extracellular pH using1H MRSI. Magn Reson Med 41(4):743–750

    Article  Google Scholar 

  405. Engin K, Leeper DB, Cater JR et al (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11(2):211–216

    Article  CAS  Google Scholar 

  406. DuDu JZXJ, Mao CQ et al (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563

    Article  Google Scholar 

  407. Sankaranarayanan J, Mahmoud EA, Kim G et al (2010) Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano 4(10):5930–5936

    Article  CAS  Google Scholar 

  408. Chen J, Qiu X, Ouyang J et al (2011) pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromol 12(10):3601–3611

    Article  CAS  Google Scholar 

  409. Park JS, Han TH, Lee KY et al (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 115(1):37–45

    Article  CAS  Google Scholar 

  410. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55(1):663–700

    Article  CAS  Google Scholar 

  411. Sahu SK, Mallick SK, Santra S et al (2010) In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci: Mater Med 21(5):1587–1597

    CAS  Google Scholar 

  412. El-Dakdouki MH, Xia J, Zhu DC et al (2014) Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces 6(1):697–705

    Article  CAS  Google Scholar 

  413. Iranpour S, Bahrami AR, Nekooei S et al (2021) Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnol 19(1):314

    Article  CAS  Google Scholar 

  414. Bagheri E, Alibolandi M, Abnous K et al (2021) Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 9(5):1351–1363

    Article  CAS  Google Scholar 

  415. Gautier J, Allard-Vannier E, Munnier E et al (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 169(1):48–61

    Article  CAS  Google Scholar 

  416. El-Dakdouki MH, Zhu DC, El-Boubbou K et al (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromol 13(4):1144–1151

    Article  CAS  Google Scholar 

  417. Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481

    Article  CAS  Google Scholar 

  418. Yu M, Huang S, Yu KJ et al (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. IJMS 13(5):5554–5570

    Article  CAS  Google Scholar 

  419. Unger EC (2003) How can superparamagnetic iron oxides be used to monitor disease and treatment? Radiology 229(3):615–616

    Article  Google Scholar 

  420. Cole AJ, David AE, Wang J et al (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193

    Article  CAS  Google Scholar 

  421. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  Google Scholar 

  422. Hu SH, Liu TY, Liu DM et al (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All contributors who provided help during the research have been listed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Doan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, L., Nguyen, L.T. & Nguyen, N.T.N. Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review. J Nanopart Res 25, 73 (2023). https://doi.org/10.1007/s11051-023-05716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05716-3

Keywords

Navigation