Skip to main content
Log in

Size-selective preparation of gold nanoparticles stabilized on chitosan using the matrix-transfer method

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper describes the size-selective preparation of gold nanoparticles stabilized on chitosan. The exchange of the matrix from the size-selectively prepared Au:PVPs(K-15) to chitosan (chit) proceeded by the mixing of Au:PVPs(K-15) and chitosan in an immiscible two-phasic solvent system to produce Au:chits, where 2-PrOH acts as a mediator. The size dependency of the catalytic activity of the thus-prepared Au:chits is investigated using a homocoupling reaction of phenylboronic acid under aerobic conditions to find that 2.3 nm-sized Au:chit exhibited the best catalytic activity, but the smaller-sized (1.4 nm) catalyst is better for the product selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

Data Availability

Data are available in the text. Also, there are FT-IR, and the details of the sample preparation and the optimization in the supporting information.

References

  1. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 116(18):10346–10413

    Article  CAS  Google Scholar 

  2. Kang H et al (2019) Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 119(1):664–699

    Article  CAS  Google Scholar 

  3. Lee JW, Choi SR, Heo JH (2021) Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl Mater Interfaces

  4. Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M (2021) Green Synthesis of Nanoparticles and Their Biomedical Applications: A Review. ACS Appl Nano Mater 4(11):11428–11457

    Article  CAS  Google Scholar 

  5. Uehara N (2010) Polymer-functionalized gold nanoparticles as versatile sensing materials. Anal Sci 26(12):1219–1228

    Article  CAS  Google Scholar 

  6. Ha M, Kim JH, You M, Li Q, Fan C, Nam JM (2019) Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 119(24):12208–12278

    Article  CAS  Google Scholar 

  7. Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR (2019) Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl Bio Mater 2(12):5492–5511

    Article  CAS  Google Scholar 

  8. Gao Y, Zhou Y, Chandrawati R (2020) Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Appl Nano Mater 3(1):1–21

    Article  Google Scholar 

  9. Zeiri O (2020) Metallic-Nanoparticle-Based Sensing: Utilization of Mixed-Ligand Monolayers. ACS Sensors 5(12):3806–3820

    Article  CAS  Google Scholar 

  10. Nilghaz A, Mousavi SM, Tian J, Cao R, Guijt RM, Wang X (2021) Noble-Metal Nanoparticle-Based Colorimetric Diagnostic Assays for Point-of-Need Applications. ACS Appl Nano Mater 4(12):12808–12824

    Article  CAS  Google Scholar 

  11. Wang Y, Wei G, Wen F, Zhang X, Zhang W, Shi L (2008) Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis. J Mol Catal A Chem 280(1–2):1–6

    Article  CAS  Google Scholar 

  12. Rahme K et al (2013) Highly stable PEGylated gold nanoparticles in water: Applications in biology and catalysis. RSC Adv 3(43):21016–21024

    Article  CAS  Google Scholar 

  13. Yao Y, Xue M, Zhang Z, Zhang M, Wang Y, Huang F (2013) Gold nanoparticles stabilized by an amphiphilic pillar[5]arene: Preparation, self-assembly into composite microtubes in water and application in green catalysis. Chem Sci 4(9):3667–3672

    Article  CAS  Google Scholar 

  14. Ferry A et al (2015) Negatively Charged N-Heterocyclic Carbene-Stabilized Pd and Au Nanoparticles and Efficient Catalysis in Water. ACS Catal 5(9):5414–5420

    Article  CAS  Google Scholar 

  15. Li N, Liu X (2019) Synthesis of Dendrimer-Stabilized Au Nanoparticles and Their Application in the Generation of Hydroxyl Radicals. ChemistrySelect 4(34):9897–9900

    Article  CAS  Google Scholar 

  16. Heddle JG (2013) Gold nanoparticle-biological molecule interactions and catalysis. Catalysts 3(3):683–708

    Article  Google Scholar 

  17. Silva AO, Cunha RS, Hotza D, Machado RAF (2021) Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr Polym 272:118472

  18. Wei D, Ye Y, Jia X, Yuan C, Qian W (2010) Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr Res 345(1):74–81

    Article  CAS  Google Scholar 

  19. Kustov LM, Finashina ED, Shuvalova EV, Tkachenko OP, Kirichenko OA (2011) Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environ Int 37(6):1044–1052

    Article  CAS  Google Scholar 

  20. Cotugno P, Casiello M, Nacci A, Mastrorilli P, Dell’Anna MM, Monopoli A (2014) Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids. J Organomet Chem 752:1–5

    Article  CAS  Google Scholar 

  21. Tan WL, Abu Bakar NHH, Abu Bakar M (2015) Catalytic reduction of p-nitrophenol using chitosan stabilized copper nanoparticles. Catal Lett 145(8):1626–1633

  22. Laghrib F, Ajermoun N, Bakasse M, Lahrich S, El Mhammedi MA (2019) Synthesis of silver nanoparticles assisted by chitosan and its application to catalyze the reduction of 4-nitroaniline. Int J Biol Macromol 135:752–759

    Article  CAS  Google Scholar 

  23. Murugadoss A, Sakurai H (2011) Chitosan-stabilized gold, gold-palladium, and gold-platinum nanoclusters as efficient catalysts for aerobic oxidation of alcohols. J Mol Catal A Chem 341(1–2):1–6

    Article  CAS  Google Scholar 

  24. Dhital RN, Murugadoss A, Sakurai H (2012) Dual roles of polyhydroxy matrices in the homocoupling of arylboronic acids catalyzed by gold nanoclusters under acidic conditions. Chem - An Asian J 7(1):55–59

    Article  CAS  Google Scholar 

  25. Dhital RN, Sakurai H (2014) Oxidative Coupling of Organoboron Compounds. Asian J Org Chem 3(6):668–684

    Article  CAS  Google Scholar 

  26. Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T (2004) Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water. Langmuir 20(26):11293–11296

    Article  CAS  Google Scholar 

  27. Ishida T, Murayama T, Taketoshi A, Haruta M (2020) Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem Rev 120(2):464–525

    Article  CAS  Google Scholar 

  28. Wang H, Lu J (2020) A Review on Particle Size Effect in Metal-Catalyzed Heterogeneous Reactions. Chinese J Chem 38(11):1422–1444

    Article  CAS  Google Scholar 

  29. Axet MR, Philippot K (2020) Catalysis with Colloidal Ruthenium Nanoparticles. Chem Rev 120(2):1085–1145

    Article  CAS  Google Scholar 

  30. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127(26):9374–9375

    Article  CAS  Google Scholar 

  31. Tsunoyama H, Sakurai H, Tsukuda T (2006) Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem Phys Lett 429(4–6):528–532

    Article  CAS  Google Scholar 

  32. Haesuwannakij S et al (2014) Size-controlled preparation of gold nanoclusters stabilized by high-viscosity hydrophilic polymers using a microflow reactor. Monatshefte fur Chemie 145(1):23–28

    Article  CAS  Google Scholar 

  33. Haesuwannakij S et al (2017) The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters. Sci Rep 7(1):1–8

    Article  Google Scholar 

  34. Haesuwannakij S et al (2017) Size-controlled preparation of gold nanoclusters on hydroxyapatite through trans-deposition method. J Nanosci Nanotechnol 17(7):4649–4657

    Article  CAS  Google Scholar 

  35. Haesuwannakij S, Yakiyama Y, Sakurai H (2017) Partially Fluoride-Substituted Hydroxyapatite as a Suitable Support for the Gold-Catalyzed Homocoupling of Phenylboronic Acid: An Example of Interface Modification. ACS Catal 7(4):2998–3003

    Article  CAS  Google Scholar 

  36. Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh TA, Uyama H, Sakurai H (2020) Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification. ACS Omega 5(51):33206–33213

    Article  CAS  Google Scholar 

  37. De Brauw C, Jong B, De Mol Van H, Otterloo PO, Barwick VJ (1997) Strategies for solvent selection - A literature review. Common Leg Framew Tak Bids Eur 1(6):293–309

    Google Scholar 

  38. Çaykara T (2004) Solubility parameters of cross-linked poly(N-vinyl-2-pyrrolidone-co- crotonic acid) copolymers prepared by γ-ray-induced polymerization technique. J Macromol Sci - Pure Appl Chem 41 A(8):971–979

  39. Sakurai H, Tsunoyama H, Tsukuda T (2007) Oxidative homo-coupling of potassium aryltrifluoroborates catalyzed by gold nanocluster under aerobic conditions. J Organomet Chem 692(1–3):368–374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grant nos. (19H00912, HS), (19K22187, HS), (20K15279, YU); the JST-Mirai Program (JPMJMI18E3, HS). NA acknowledges JSPS for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Sakurai.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 309 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assan, N., Uetake, Y. & Sakurai, H. Size-selective preparation of gold nanoparticles stabilized on chitosan using the matrix-transfer method. J Nanopart Res 25, 50 (2023). https://doi.org/10.1007/s11051-023-05700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05700-x

Keywords

Navigation