Skip to main content

Advertisement

Log in

Nitrogen and sulfur-codoped porous carbon derived from zein/poly(ionic liquid) complexes as electrode material for high-performance supercapacitor

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, nitrogen and sulfur-codoped porous carbon material (ZC) was prepared via carbonization of the complex of hydrophobic poly(ionic liquid) (PIL) and zein through electrostatic interaction. The structure and morphology of ZCs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and Raman spectroscopy. In addition, nitrogen adsorption–desorption analysis showed that ZCs were mainly mesoporous, and the pore size was in a narrow dispersity. The surface area of ZC-10 could be as high as 764 m2 g−1, and the total pore volume was 0.41 cm3 g−1. Remarkably, the specific capacitance of the electrode prepared by ZC-10 was 338 F g−1 in 2.0 M KOH at a current density of 0.1 A g−1 and presented excellent cycle stability. After 5000 cycles, the specific capacitance still remained stable. Therefore, our finding suggested a facile strategy for the fabrication of porous carbon materials with high capacitance performance through PIL and biomacromolecule composites. Considering their easy preparation and biomass source, ZCs are of great potential in the future applications of electronic devices and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  2. Schmidt DG (2016) Research opportunities for future energy technologies. ACS Energy Lett 1:244–245

    Article  CAS  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  5. Zhou Y, Hejazi M, Smith S, Edmonds J, Li H, Clarke L, Calvin K, Thomson A (2015) A comprehensive view of global potential for hydro-generated electricity. Energy Environ Sci 8:2622–2633

    Article  Google Scholar 

  6. Chen S, Xing W, Duan J, Hu X, Qiao S (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954

    Article  CAS  Google Scholar 

  7. Zhu Q, Zhao D, Cheng M, Zhou J, Owusu KA, Mai LQ, Yu Y (2019) A new view of supercapacitors: integrated supercapacitors. Adv Energy Mater 9:1901081

    Article  Google Scholar 

  8. Libich J, Máca J, íVondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy torage 17:224–227

    Article  Google Scholar 

  9. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  10. Lu W, Shen J, Zhang P, Zhong Y, Hu Y, Luo X (2019) Construction of CoO/Co-Cu-S hierarchical tubular hetero structures for hybrid supercapacitors. Angew Chem Int Ed 58:15441–15447

    Article  CAS  Google Scholar 

  11. Zhang J, Lin J, Wu J, Xu R, Lai M, Gong C, Chen X, Zhou P (2016) Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta 207:87–96

    Article  CAS  Google Scholar 

  12. Meng Q, Cai K, Chen Y, Li C (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  13. Wu Z, He K, Wu Y, Mao J, Yang Z, Xu Y, Yuan C, Zeng B, Dai L (2019) A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion. J Power Sources 442:227215

    Article  CAS  Google Scholar 

  14. Gao F, Song J, Teng H, Luo X, Ma M (2021) All-polymer ultrathin flexible supercapacitors for electronic skin. Chem Eng J 405:126915

    Article  CAS  Google Scholar 

  15. Yu C, Masarapu C, Rong J, Wei B, Jiang H (2009) Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater 21:4793–4797

    Article  CAS  Google Scholar 

  16. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  17. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  18. Lv T, Liu M, Zhu D, Gan L, Chen T (2018) Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv Mater 30:1705489

    Article  Google Scholar 

  19. EL-Mahdy AFM, Yu TC, Kuo SW (2021) Synthesis of multiple heteroatom-doped mesoporous carbon/silica composites for supercapacitors. Chem Eng J 414:128796

    Article  CAS  Google Scholar 

  20. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresource Technol 102:1118–1123

    Article  CAS  Google Scholar 

  21. He Y, Zhuang X, Lei C, Lei L, Huo Y, Mai Y, Feng X (2019) Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24:103–119

    Article  CAS  Google Scholar 

  22. Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D (2020) Mesoporous materials for electrochemical energy storage and conversion. Adv Energy Mater 10:2002152

    Article  CAS  Google Scholar 

  23. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159

    Article  CAS  Google Scholar 

  24. Zhou D, Liu R, Zhang J, Qi X, He YB, Li B, Yang QH, Hu YS, Kang F (2017) In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 33:45–54

    Article  CAS  Google Scholar 

  25. Zhang H, Zhang H, Zhang F, Li X, Li Y, Vankelecom I (2013) Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy Environ Sci 6:776–781

    Article  CAS  Google Scholar 

  26. Zhao Y, Li M, Yuan Z, Li X, Zhang H, Vankelecom I (2016) Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Adv Funct Mater 26:210–218

    Article  CAS  Google Scholar 

  27. Feng J, Wang Y, Xu Y, Ma H, Wang G, Ma P, Tang Y, Yan X (2021) Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly(ionic liquid) electrolytes. Adv Mater 33:2100887

    Article  CAS  Google Scholar 

  28. Wang Y, Yang G, Jiang F, Qiu T, Qian L, Zhou L, Yang C, Huang J, Dai G (2022) Fabrication of porous imidazole polymerized ionic liquids with fast ion diffusing kinetics for super lithiation anode materials in lithium-ion batteries. J Mater Chem A 10:16795–16802

    Article  CAS  Google Scholar 

  29. Wang H, Min S, Wang Q, Li D, Casillas G, Ma C, Li Y, Liu Z, Li LJ, Yuan J, Antonietti M, Wu T (2017) Nitrogen-doped nanoporous carbon membranes with Co/CoP janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 11:4358–4364

    Article  CAS  Google Scholar 

  30. Hernández G, Işik M, Mantione D, Pendashteh A, Navalpotro P, Shanmukaraj D, Marcilla R, Mecerreyes D (2017) Redox-active poly(ionic liquid)s as active materials for energy storage applications. J Mater Chem A 5:16231–16240

    Article  Google Scholar 

  31. Zhang W, Wei S, Wu Y, Wang YL, Zhang M, Roy D, Wang H, Yuan J, Zhao Q (2019) Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 13:10261–10271

    Article  CAS  Google Scholar 

  32. Liu J, Wickramaratne NP, Qiao S, Jaroniec M (2015) Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Mater 14:763–774

    Article  CAS  Google Scholar 

  33. Guo Y, Wang T, Wu D, Tan Y (2021) One-step synthesis of in-situ N, S self-doped carbon nanosheets with hierarchical porous structure for high performance supercapacitor and oxygen reduction reaction electrocatalyst. Electrochim Acta 366:1374

    Article  Google Scholar 

  34. Lu Y, Zhang Q, Lei S, Cui X, Deng S, Yang Y (2019) In situ templating approach to fabricate small-mesopore-dominant S-doped porous carbon electrodes for supercapacitors and Li-ion batteries. ACS Appl Energy Mater 2:5591–5599

    Article  CAS  Google Scholar 

  35. Gao MR, Yuan J, Antonietti M (2017) Ionic liquids and poly(ionic liquid)s for morphosynthesis of inorganic materials. Chem-eur J 23:5391–5403

    Article  CAS  Google Scholar 

  36. Shao Y, Jiang Z, Zhang Y, Wang T, Zhao P, Zhang Z, Yuan J, Wang H (2018) All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 12:11704–11710

    Article  CAS  Google Scholar 

  37. Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun JK, Matyjaszewski K, Antonietti M, Yuan J (2020) Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 120:9363–9419

    Article  CAS  Google Scholar 

  38. Fan C, Tian Y, Bai S, Zhang C, Wu X (2021) Nitrogen-doped porous carbon nanosheets for high-performance supercapacitors. J Energy Storage 44:103492

    Article  Google Scholar 

  39. Yang C, Jia Q, Pan Q, Qi W, Ling R, Cao B (2022) A bubble-templated approach to holey N/S-codoped carbon nanosheet aerogels with honeycomb-like structure for supercapacitors. Electrochim Acta 404:139741

    Article  CAS  Google Scholar 

  40. Lin G, Wang Q, Yang X, Cai Z, Xiong Y, Huang B (2020) Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Adv 10:17768–17776

    Article  CAS  Google Scholar 

  41. Kim D, Bong S, Jin X, Seong KD, Hwang M, Kim ND, You NH, Piao Y (2019) Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors. ACS Appl Mater Inter 11:1996–2005

    Article  CAS  Google Scholar 

  42. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462

    Article  CAS  Google Scholar 

  43. Demir M, Kahveci Z, Aksoy B, Palapati NKR, Subramanian A, Cullinan HT, Kaderi HME, Harris CT, Gupta RB (2015) Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind Eng Chem Res 54:10731–10739

    Article  CAS  Google Scholar 

  44. Piñero ER, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Funct Mater 19:1032–103

    Article  Google Scholar 

  45. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  CAS  Google Scholar 

  46. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13:171–192

    Article  CAS  Google Scholar 

  47. Raza A, Hayat U, Bilal M, Iqbal H, Wang J (2020) Zein- based micro- and nano-constructs and biologically therapeutic cues with multi-functionalities for oral drug delivery systems. J Drug Delivery Sci Technol 58:101818

    Article  CAS  Google Scholar 

  48. Folter JD, Ruijven MV, Velikov K (2012) Oil-in-water Pickering emulsions stabilized by colloidal particles from. The water-insoluble protein zein. Soft Matter 8:6807

    Article  Google Scholar 

  49. Jing L, Wang X, Liu H, Lu Y, Bian J, Sun J, Huang D (2018) Zein increases the cytoaffinity and biodegradability of scaffolds 3D-printed with zein and poly (ε-caprolactone) composite ink. ACS Appl Mater Interfaces 10:18551–18559

    Article  CAS  Google Scholar 

  50. Sun L, Zhou Y, Li L, Zhou H, Liu X, Zhang Q, Gao B, Meng Z, Zhou D, Ma Y (2019) Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl Surf Sci 467–468:382–390

    Article  Google Scholar 

  51. Yuan R, Wang H, Sun M, Damodaran K, Gottlieb E, Kopeć M, Eckhart K, Li S, Whitacre J, Matyjaszewski K, Kowalewski T (2019) Well-defined N/S co-doped nanocarbons from sulfurized PAN-b-PBA block copolymers: structure and supercapacitor performance. ACS Appl Nano Mater 2:2467–2474

    Article  CAS  Google Scholar 

  52. Yuan J, Giordano C, Antonietti M (2010) Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Polym Chem 22:5003–5012

    CAS  Google Scholar 

  53. Zhao Q, Fellinger TP, Antonietti M, Yuan J (2013) A novel polymeric precursor for micro/mesoporous nitrogen-doped carbons. J Mater Chem A 1:5113

    Article  CAS  Google Scholar 

  54. Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10:2427–2437

    Article  CAS  Google Scholar 

  55. Zhang H, Ling Y, Peng Y, Zhang J, Guan S (2020) Nitrogen-doped porous carbon materials derived from ionic liquids as electrode for supercapacitor. Inorg Chem Commun 115:107856

    Article  CAS  Google Scholar 

  56. Ji D, Peng S, Lu J, Li L, Yang S, Yang G, Qin X, Srinivasand M, Ramakrishna S (2017) Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. J Mater Chem A 16:7505–7515

    Google Scholar 

  57. Wang H, Min S, Ma C, Liu Z, Zhang W, Wang Q, Li D, Li Y, Turner S, Han Y, Zhu H, Abou-hamad E, Hedhili MN, Pan J, Yu W, Huang KW, Li LJ, Yuan J, Antonietti M, Wu T (2017) Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nat Commun 8:13592

    Article  CAS  Google Scholar 

  58. Yang S, Zhi L, Tang FX, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640

    Article  CAS  Google Scholar 

  59. Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, Zhang M, Jing X (2013) Two-dimensional mesoporous carbon sheet-like frame-work material for high-rate supercapacitors. Carbon 60:481–487

    Article  CAS  Google Scholar 

  60. Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116:5420–5426

    Article  CAS  Google Scholar 

  61. Liu M, Gan L, Xiong W, Zhao F, Fan X, Zhu D, Xu Z, Hao Z, Chen L (2013) Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors. Energy Fuels 27:1168–1173

    Article  CAS  Google Scholar 

  62. Fan X, Yu C, Yang J, Ling Z, Qiu J (2014) Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:130–141

    Article  CAS  Google Scholar 

  63. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  64. Liu Y, Wang Y, Zhang G, Liu W, Wang D, Dong Y (2016) Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater Lett 176:60–63

    Article  CAS  Google Scholar 

  65. Xing W, Qiao S, Ding R, Li F, Lu G, Yan Z, Cheng H (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21774101, 21902145) and the founding from Longgang Institute of Zhejiang Sci-Tech University (LGYJY2021010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifeng Dai or Yubing Xiong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1636 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, H., Dai, Z. et al. Nitrogen and sulfur-codoped porous carbon derived from zein/poly(ionic liquid) complexes as electrode material for high-performance supercapacitor. J Nanopart Res 25, 34 (2023). https://doi.org/10.1007/s11051-023-05677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05677-7

Keywords

Navigation