Skip to main content
Log in

Chitosan/tripolyphosphate nanoparticle as elastase inhibitory peptide carrier: characterization and its in vitro release study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study is aimed at the preparation and evaluation of walnut meal-derived elastase inhibitory peptide loaded in chitosan-tripolyphosphate (CS-TPP) nanoparticles (NPs). It was shown that the maximum encapsulation efficiency of FFVPF could reach 94.58 ± 0.23%. TEM microphotographs, polydispersity index, and zeta-sizer reports indicated that FFVPF-loaded CS-TPP NPs were in nanometric range and were spherical, discrete, and uniform in size with PDI less than 0.3. FTIR analysis indicated that the peptides interacted with CS-TPP NPs through strong hydrogen bonds and electrostatic interactions. The CS-TPP FFVPF NPs showed better stability with heating treatment, pH treatment, or photochemical treatment. Moreover, the in vitro release profile of peptides was identified. The release rate of encapsulated FFVPF was released explosively to 77.22 ± 2.21% and gradually slowed down. These findings highlighted the prospect of CS-TPP NPs as an oral delivery system, and the application of peptides within food and pharmaceutical products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

FFVPF:

Phe-Phe-Val-Pro-Phe

CS:

Chitosan

TPP:

Tripolyphosphate

NPs:

Nanoparticles

EE:

Entrapment efficiency

LE:

Loading efficiency

RP-HPLC:

Reversed-phase high performance liquid chromatography

PDI:

Polydispersity index

FTIR:

Fourier transform infrared

XRD:

X-ray diffraction

TEM:

Transmission electron microscopy

References

  1. Poorinmohammad N, Mohabatkar H (2015) A comparison of different machine learning algorithms for the prediction of anti-HIV-1 peptides based on their sequence-related properties. Int J Pept Res Ther 21(1):57–62. https://doi.org/10.1007/s10989-014-9432-x

    Article  CAS  Google Scholar 

  2. Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:1–23. https://doi.org/10.3389/fmicb.2013.00321

    Article  Google Scholar 

  3. Liu D, Guo Y, Wu P, Wang Y, Golly MK, Ma H (2020) The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chem 311:125960. https://doi.org/10.1016/j.foodchem.2019.125960

    Article  CAS  Google Scholar 

  4. Chen N, Yang H, Sun Y, Niu J, Liu S (2012) Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 38(2):344–349. https://doi.org/10.1016/j.peptides.2012.09.017

    Article  CAS  Google Scholar 

  5. Chen H, Zhao M, Lin L, Wang J, Sun-Waterhouse D, Dong Y, Zhuang M, Su G (2015) Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res Int 78:216–223. https://doi.org/10.1016/j.foodres.2015.10.008

    Article  CAS  Google Scholar 

  6. Praxedes-Garcia P, Cruz-Silva I, Gozzo AJ, Nunes VA, Torquato RJ, Tanaka AS, Figueiredo-Ribeiro RC, Araújo MS (2012) Biochemical aspects of a serine protease from Caesalpinia echinata Lam. (Brazilwood) seeds: a potential tool to access the mobilization of seed storage proteins. Sci World J 2012:562715. https://doi.org/10.1100/2012/562715

    Article  CAS  Google Scholar 

  7. Tsukahara K, Nakagawa H, Moriwaki S, Takema Y, Fujimura T, Imokawa G (2006) Inhibition of ultraviolet-B-induced wrinkle formation by an elastase-inhibiting herbal extract: implication for the mechanism underlying elastase-associated wrinkles. Int J Dermatol 45(4):460–468. https://doi.org/10.1111/j.1365-4632.2006.02557.x

    Article  Google Scholar 

  8. Heinz A (2020) Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol 55(3):252–273. https://doi.org/10.1080/10409238.2020.1768208

    Article  CAS  Google Scholar 

  9. Xiong Y, Peng P, Chen SJ, Chang M, Wang Q, Yin SN, Ren DF (2022) Preparation, identification, and molecular docking of novel elastase inhibitory peptide from walnut (Juglans regia L.) meal. Food Chem: Mol Sci 5:100139. https://doi.org/10.1016/j.fochms.2022.100139

    Article  CAS  Google Scholar 

  10. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA (2012) Nanotechnology-based approaches in anticancer research (Review). Int J Nanomed 7(1):4391–4408. https://doi.org/10.2147/IJN.S33838

    Article  CAS  Google Scholar 

  11. Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:372. https://doi.org/10.3389/fmicb.2015.00372

    Article  Google Scholar 

  12. Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliver Rev 106(Part B):256–276. https://doi.org/10.1016/j.addr.2016.07.007

    Article  CAS  Google Scholar 

  13. Mohan A, Rajendran SRCK, He QS, Bazinet L, Udenigwe CC (2015) Encapsulation of food protein hydrolysates and peptides: a review. RSC Adv 5(97):79270–79278. https://doi.org/10.1039/c5ra13419f

    Article  CAS  Google Scholar 

  14. Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid In 19(5):417–427. https://doi.org/10.1016/j.cocis.2014.07.002

    Article  CAS  Google Scholar 

  15. Yamamoto A, Ukai H, Morishita M, Katsumi H (2020) Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol Therapeut 211:107537. https://doi.org/10.1016/j.pharmthera.2020.107537

    Article  CAS  Google Scholar 

  16. Duttagupta DS, Jadhav VM, Kadam VJ (2015) Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv 12(4):369–381. https://doi.org/10.2174/1567201812666150310151657

    Article  CAS  Google Scholar 

  17. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharmaceut 455(1–2):219–228. https://doi.org/10.1016/j.ijpharm.2013.07.034

    Article  CAS  Google Scholar 

  18. Sang Z, Qian J, Han J, Deng X, Shen J, Li G, Xie Y (2020) Comparison of three water-soluble polyphosphate tripolyphosphate, phytic acid, and sodium hexametaphosphate as crosslinking agents in chitosan nanoparticle formulation. Carbohyd Polym 230:115577. https://doi.org/10.1016/j.carbpol.2019.115577

    Article  CAS  Google Scholar 

  19. Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu Y (2013) Protein-polyelectrolyte interactions. Soft Matter 9(9):2553–2583. https://doi.org/10.1039/c2sm27002a

    Article  CAS  Google Scholar 

  20. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid Surface B 90(1):21–27. https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  Google Scholar 

  21. Yang S, Liu L, Chen H, Li Z, Chen F, Gao Y (2021) Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocoll 112:106258. https://doi.org/10.1016/j.foodhyd.2020.106258

    Article  CAS  Google Scholar 

  22. Shah BR, Li Y, Jin W, An Y, He L, Li Z, Xu W, Li B (2016) Preparation and optimization of pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocoll 52(1):369–377. https://doi.org/10.1016/j.foodhyd.2015.07.015

    Article  CAS  Google Scholar 

  23. Mohan A, McClements DJ, Udenigwe CC (2016) Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: influence of peptide molecular weight. Food Chem 213:143–148. https://doi.org/10.1016/j.foodchem.2016.06.075

    Article  CAS  Google Scholar 

  24. Nesalin JAJ, Dhas ASAG (2012) Preparation and evaluation of chitosan nanoparticles containing zidovudine. Asian J Pharm Sci 7(1):80–84

    Google Scholar 

  25. Rotar OV, Tenedja K, Arkhelyuk AD, Rotar VI, Davidencko IS, Fediv VI (2014) Preparation of chitosan nanoparticles loaded with glutathione for diminishing tissue ischemia-reperfusion injury. Int J Adv Eng Nano Tech 1(6):19–23

    Google Scholar 

  26. Abolhasani A, Heidari F, Abolhasani H (2020) Development and characterization of chitosan nanoparticles containing an indanonic tricyclic spiroisoxazoline derivative using ion-gelation method: an in vitro study. Drug Dev Ind Pharm 46(10):1604–1612. https://doi.org/10.1080/03639045.2020.1811304

    Article  CAS  Google Scholar 

  27. Hosseini SF, Nahvi Z, Zandi M (2018) Antioxidant peptide-loaded electrospun chitosan/poly (vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocoll 89(1):637–648. https://doi.org/10.1016/j.foodhyd.2018.11.033

    Article  CAS  Google Scholar 

  28. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Tech 23(1):13–27. https://doi.org/10.1016/j.tifs.2011.08.003

    Article  CAS  Google Scholar 

  29. Sonavane G, Tomoda K, Makino K (2009) Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloid Surface B 66(2):274–280. https://doi.org/10.1016/j.colsurfb.2008.07.004

    Article  CAS  Google Scholar 

  30. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Edit 47(44):8438. https://doi.org/10.1002/anie.200890224

    Article  CAS  Google Scholar 

  31. Hosseini SF, Soleimani MR, Nikkhah M (2018) Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for antioxidant peptidic fraction from common kilka. Int J Biol Macromol 111:730–737. https://doi.org/10.1016/j.ijbiomac.2018.01.023

    Article  CAS  Google Scholar 

  32. Du Z, Liu J, Zhang T, Wei S, Ding L, Liu B (2019) A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem 286:530–536. https://doi.org/10.1016/j.foodchem.2019.02.012

    Article  CAS  Google Scholar 

  33. Hasheminejad N, Khodaiyan F, Safari M (2019) Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 275:113–122. https://doi.org/10.1016/j.foodchem.2018.09.085

    Article  CAS  Google Scholar 

  34. Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier–systematic examination of fabrication conditions for efficient loading and release. Colloid Surface B 59(1):24–34. https://doi.org/10.1016/j.colsurfb.2007.04.009

    Article  CAS  Google Scholar 

  35. Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliver Rev 47(1):3–19

    Article  Google Scholar 

  36. Bulmer C, Margaritis A, Xenocostas A (2012) Production and characterization of novel chitosan nanoparticles for controlled release of rHu-erythropoietin. Biochem Eng J 68(1):61–69. https://doi.org/10.1016/j.bej.2012.07.007

    Article  CAS  Google Scholar 

  37. Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10(3):203–211. https://doi.org/10.1016/j.ajps.2014.09.005

    Article  Google Scholar 

  38. Kaliaperumal J, Hari N, Pavankumar P, Elangovan N (2016) pACC1 Peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells. Appl Nanosci 6(5):615–627. https://doi.org/10.1007/s13204-015-0470-2

    Article  CAS  Google Scholar 

  39. Ayumi NS, Sahudin S, Hussain Z, Hussain M, Samah NHA (2019) Polymeric nanoparticles for topical delivery of alpha and beta arbutin: preparation and characterization. Drug Deliv Transl Re 9(2):482–496. https://doi.org/10.1007/s13346-018-0508-6

    Article  CAS  Google Scholar 

  40. Esmaeili A, Asgari A (2015) In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biol Macromol 81:283–290. https://doi.org/10.1016/j.ijbiomac.2015.08.010

    Article  CAS  Google Scholar 

  41. Shirakura T, Kelson TJ, Ray A, Malyarenko AE, Kopelmanet R (2014) Hydrogel nanoparticles with thermally controlled drug release. ACS Macro Lett 3(7):602–606. https://doi.org/10.1021/mz500231e

    Article  CAS  Google Scholar 

  42. Nasri R, Hamdi M, Touir S, Li S, Karra CM, Nasri M (2020) Development of delivery system based on marine chitosan: encapsulation and release kinetic study of antioxidant peptides from chitosan microparticle. Int J Biol Macromol 167:1445–1451. https://doi.org/10.1016/j.ijbiomac.2020.11.098

    Article  CAS  Google Scholar 

  43. Danish MK, Vozza G, Byrne HJ, Frias JM, Ryan SM (2017) Formulation, characterization and stability assessment of a food-derived tripeptide, Leucine-Lysine-Proline loaded chitosan nanoparticles. J Food Sci 82(9):2094–2104. https://doi.org/10.1111/1750-3841.13824

    Article  CAS  Google Scholar 

  44. Dai L, Sun C, Li R, Mao L, Liu F, Gao Y (2017) Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem 237:1163–1171. https://doi.org/10.1016/j.foodchem.2017.05.134

    Article  CAS  Google Scholar 

  45. Luo Y, Zhang B, Cheng W, Wang Q (2010) Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohyd Polym 82(3):942–951. https://doi.org/10.1016/j.carbpol.2010.06.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key R&D Program of China (2019YFD1002400) and National Promotion Project of Scientific and Technological Achievements in Forestry and Grassland (2020133135).

Author information

Authors and Affiliations

Authors

Contributions

Yu Xiong: writing (original draft), investigation, and data curation. Le Cheng: writing (original draft) and investigation. Xiao-Yi Wang: investigation. Ye-Hua Shen: investigation. Cong Li: resources and methodology. Di-Feng Ren: project administration, writing (review and editing), and supervision.

Corresponding author

Correspondence to Di-Feng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Cheng, L., Wang, XY. et al. Chitosan/tripolyphosphate nanoparticle as elastase inhibitory peptide carrier: characterization and its in vitro release study. J Nanopart Res 25, 30 (2023). https://doi.org/10.1007/s11051-023-05672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05672-y

Keywords

Navigation