Skip to main content
Log in

Optically active pH-dependent colloids of silver nanoparticles capped by polygalacturonic acid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Optically active nanobiocolloids (NBC) containing plasmonic nanoparticles (NP) covered by helical biomacromolecules are interesting for various theranostic applications. We report the study of NBC colloids containing from 4.4 to 9.3 w/w % of small (ca. 10 nm) spherical AgNPs covered by polygalacturonic acid (PGA). The AgNPs were obtained by reduction of silver ions with the functional groups of PGA. The NBC structure was formed by nanoprecipitation of the final solution into an anti-solvent (ethanol) bath. The NBC powders were characterized by transmission electron and atomic force (AFM) microscopies, FT-IR, and X-ray diffraction. The FT-IR analysis showed that the carboxylate groups of PGA were attached to the AgNPs’ surface by bidentate binding. The PGA (the major constituent of the main chain of pectins) is a weak anionic polysaccharide which helical conformations and their self-assembly depend on the deprotonation of carboxyl groups. We studied how pH influences the form, size, depolarization of scattered light, and chiroplasmonic properties of NBC. The optical rotatory dispersion of NBC exhibited plasmonically enhanced Cotton effect related to helical PGA macromolecules capped to AgNPs. The Cotton effect changed its sign from negative (at pH 4.01) to positive (at pH 6.86) implying the inversion of handedness of the PGA helixes. By using dynamic and depolarized dynamic light scattering, the effective hydrodynamic radii were calculated for translational (Rh) and rotational (Rrot) diffusion. Their characteristic ratio Rrot/Rh expressed in terms of the Perrin frictional coefficients showed that the form of NBC colloids changed from spherical to elongated with decreasing pH. The elongated form in the acidic buffer was attributed to the side-by-side stacking of the helical segments of PGA. Low fraction of coupled plasmons and plasmonic enhancement of elliptical polarization of light by the helical conformers of PGA were both responsible for high depolarization of light scattered by NBC colloids. The highest depolarization degree of 40% observed in the acidic buffer was ascribed to the non-uniform elliptical shell of PGA around AgNPs. Contrary to the pristine particles of sodium polygalacturonate (PGA@Na), the NBC retained their size upon drying, as shown by AFM. In accord, comparison of the FT-IR spectra of NBC and PGA@Na showed that the NBC were stabilized by additional hydrogen bonds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Gonzalez C (2016) Effect of silver nanoparticles on the photophysics of riboflavin: consequences on the ROS generation. J Phys Chem 120(38):21967–21975. https://doi.org/10.1021/acs.jpcc.6b06385

    Article  CAS  Google Scholar 

  2. Lee SH, Jun B-H (2019) Molecular sciences silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865. https://doi.org/10.3390/ijms20040865

    Article  CAS  Google Scholar 

  3. Morris GA, Kök SM, Harding SE, Adams GG (2010) Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev 27(1):257–284. https://doi.org/10.1080/02648725.2010.10648153

    Article  CAS  Google Scholar 

  4. Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA (2018) Biological activity and pharmacological application of pectic polysaccharides: a review. Polymers (Basel) 10(12):1–31. https://doi.org/10.3390/polym10121407

    Article  CAS  Google Scholar 

  5. Nemiwal M, Zhang TC, Kumar D (2021) Pectin modified metal nanoparticles and their application in property modification of biosensors. Carbohydr Polym Technol Appl 2:100164. https://doi.org/10.1016/j.carpta.2021.100164

    Article  CAS  Google Scholar 

  6. Dolinska J, Holdynski M, Pieta P, Lisowski W, Ratajczyk T, Palys B, Jablonska A, Opallo M (2020) Noble metal nanoparticles in pectin matrix preparation, film formation, property analysis, and application in electrocatalysis. ACS Omega 5(37):23909–23918. https://doi.org/10.1021/acsomega.0c03167

    Article  CAS  Google Scholar 

  7. Pallavicini P, Arciola CR, Bertoglio F, Curtosi S, Dacarro G, Agostino AD, Ferrari F, Merli D, Milanese C, Rossi S, Taglietti A, Tenci M, Visai L (2017) Silver nanoparticles synthesized and coated with pectin: an ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci 498:271–281. https://doi.org/10.1016/j.jcis.2017.03.062

    Article  CAS  Google Scholar 

  8. Al-muhanna MK, Kulikouskaya VI, Kraskouski A (2015) Preparation of stable sols of silver nanoparticles in aqueous pectin. Colloid J 77(6):677–684. https://doi.org/10.7868/S0023291215060026

    Article  CAS  Google Scholar 

  9. Tummalapalli M, Deopura BL, Alam MS, Gupta B (2015) Facile and green synthesis of silver nanoparticles using oxidized pectin reduction time. Mater Sci Eng C 50:31–36. https://doi.org/10.1016/j.msec.2015.01.055

    Article  CAS  Google Scholar 

  10. Hileuskaya K, Ladutska A, Kulikouskaya V, Kraskouski A, Novik G, Kozerozhets I, Kozlovskiy A, Agabekov V (2020) ‘ Green ’ approach for obtaining stable pectin-capped silver nanoparticles : physico-chemical characterization and antibacterial activity. Colloids Surfaces A 585(July 2019):124141. https://doi.org/10.1016/j.colsurfa.2019.124141

    Article  CAS  Google Scholar 

  11. Cisneros JS, Chain CY, Rivas B, Parisi J, Castrogiovanni DC, Bosio GN, Daniel OM, Vela E (2021) Pectin-coated plasmonic nanoparticles for photodynamic therapy: inspecting the role of serum proteins. ACS Omega 6(19):12567–12576. https://doi.org/10.1021/acsomega.1c00542

    Article  CAS  Google Scholar 

  12. Gilsenan PM, Richardson RK, Morris ER (2000) Thermally reversible acid-induced gelation of low-methoxy pectin. Carbohydr Polym 41(4):339–349. https://doi.org/10.1016/S0144-8617(99)00119-8

    Article  CAS  Google Scholar 

  13. Antoniou E, Voudouris P, Larsen A, Loppinet B, Vlassopoulos D, Pastoriza-Santos I, Liz-Marzán LM (2012) Static and dynamic plasmon-enhanced light scattering from dispersions of polymer-grafted silver nanoprisms in the bulk and near solid surfaces. J Phys Chem C 116(6):3888–3896. https://doi.org/10.1021/jp2076534

    Article  CAS  Google Scholar 

  14. Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TrAC - Trends Anal Chem 30(1):4–17. https://doi.org/10.1016/j.trac.2010.08.008

    Article  CAS  Google Scholar 

  15. Gryczynski Z, Lukomska J, Lakowicz JR, Matveeva EG, Gryczynski I (2006) Depolarized light scattering from silver nanoparticles. Chem Phys Lett 421(1–3):189–192. https://doi.org/10.1016/j.cplett.2006.01.079

    Article  CAS  Google Scholar 

  16. Drozdowicz-Tomsia K, Xie F, Calander N, Gryczynski I, Gryczynski K, Goldys EM (2009) Depolarized light scattering from colloidal gold nanoparticles. Chem Phys Lett 468(1–3):69–74. https://doi.org/10.1016/j.cplett.2008.11.082

    Article  CAS  Google Scholar 

  17. Zimbone M, Messina E, Compagnini G, Fragalà ME, Calcagno L (2015) Resonant depolarized dynamic light scattering of silver nanoplatelets. J Nanoparticle Res 17(10):402. https://doi.org/10.1007/s11051-015-3188-x

    Article  CAS  Google Scholar 

  18. Hoffmann M, Wagner CS, Harnau L, Wittemann A (2009) 3D brownian diffusion of submicron-sized particle clusters. ACS Nano 3(10):3326–3334. https://doi.org/10.1021/nn900902b

    Article  CAS  Google Scholar 

  19. Koch AHR, Lévêque G, Harms S, Jaskiewicz K, Bernhardt M, Henkel A, Sönnichsen C, Landfester K, Fytas G (2014) Surface asymmetry of coated spherical nanoparticles. Nano Lett 14(7):4138–4144. https://doi.org/10.1021/nl501783x

    Article  CAS  Google Scholar 

  20. Balog S, Rodriguez-Lorenzo L, Monnier CA, Michen B, Obiols-Rabasa M, Casal-Dujat L, Rothen-Rutishauser B, Petri-Fink A, Schurtenberger P (2014) Dynamic depolarized light scattering of small round plasmonic nanoparticles: when imperfection is only perfect. J Phys Chem C 118(31):17968–17974. https://doi.org/10.1021/jp504264f

    Article  CAS  Google Scholar 

  21. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  22. Cheng J, Hill EH, Zheng Y, He T, Liu T (2018) Optically active plasmonic resonance in self-assembled nanostructures. Mater Chem Front 2:662–678. https://doi.org/10.1039/C7QM00601B

    Article  CAS  Google Scholar 

  23. Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X (2022) 1,2 Gold-nanoparticle-based chiral plasmonic nanostructures and their biomedical applications. Biosensors 12(11):957. https://doi.org/10.3390/bios12110957J

    Article  CAS  Google Scholar 

  24. Lesnichaya MV, Sukhov BG, Aleksandrova GP, Gasilova ER, Vakul’skaya TI, Khutsishvili SS, Sapozhnikov AN, Klimenkov IV, Trofimov BA (2017) Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydr Polym 175:18–26. https://doi.org/10.1016/j.carbpol.2017.07.040

    Article  CAS  Google Scholar 

  25. Li H, Gao X, Zhang C et al (2022) Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. Biosensors. Biosensors 12:957. https://doi.org/10.3390/bios12110957

    Article  CAS  Google Scholar 

  26. Jakob M, von Weber A, Kartouzian A, Heiz U (2018) Chirality transfer from organic ligands to silver nanostructures via chiral polarization of the electric field. Phys Chem Chem Phys 20:20347–20351. https://doi.org/10.1039/c8cp02970a

    Article  CAS  Google Scholar 

  27. Gasilova Ekaterina, Aleksandrova Galina, Tyshkunova Irina (2022) Colloidal nanoparticles of sodium polygalacturonate prepared by nanoprecipitation. Carbohydrate Polymers 291:119521. https://doi.org/10.1016/j.carbpol.2022.119521

    Article  CAS  Google Scholar 

  28. Loumaigne M, Midelet C, Doussineau T, Dugourd P, Antoine R, Stamboul M, Débarre A, Werts MHV (2016) Optical extinction and scattering cross sections of plasmonic nanoparticle dimers in aqueous suspension. Nanoscale 8(12):6555–6570. https://doi.org/10.1039/c6nr00918b

    Article  CAS  Google Scholar 

  29. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961. https://doi.org/10.1021/cr200061k

    Article  CAS  Google Scholar 

  30. Cesaro A, Ciana A, Delben F, Manzini G (1982) Physicochemical properties of pectic acid: I thermodynamic evidence of a ph-induced conformational transition in aqueous solution. Biopolymers 21(2):431–449. https://doi.org/10.1002/bip.360210214

    Article  CAS  Google Scholar 

  31. Hoffmann M, Yan L, Schrinner M, Ballauff M, Harnau L (2008) Dumbbell-shaped polyelectrolyte brushes studied by depolarized dynamic light scattering. J Phys Chem B 112(47):14843–14850. https://doi.org/10.1021/jp806765y

    Article  CAS  Google Scholar 

  32. Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8(1):29–42. https://doi.org/10.1007/s11483-012-9279-7

    Article  Google Scholar 

  33. Uznanski P, Zakrzewska J, Favier F, Kazmierski S, Bryszewska E (2017) Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors. J Nanoparticle Res 19(3):121. https://doi.org/10.1007/s11051-017-3827-5

    Article  CAS  Google Scholar 

  34. Nelson PN, Ellis HA, White NAS (2015) Solid state 13C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: a comparative study. Spectrochim Acta - Part A Mol Biomol Spectrosc 145:440–453. https://doi.org/10.1016/j.saa.2015.02.101

    Article  CAS  Google Scholar 

  35. Wulandari P, Nagahiro T, Michioka K, Tamada K, Kichi Ishibashi, Kimura Y, Niwano M (2008) Coordination of carboxylate on metal nanoparticles characterized by Fourier transform infrared spectroscopy. Chem Lett 37(8):888–889. https://doi.org/10.1246/cl.2008.888

    Article  CAS  Google Scholar 

  36. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl Chem 83(8):1619–1636. https://doi.org/10.1351/PAC-REP-10-01-01

    Article  CAS  Google Scholar 

  37. Encina ER, Plasmon CEA (2010) Coupling in silver nanosphere pairs. J Phys Chem C 114:3918–3923. https://doi.org/10.1021/jp912096v

    Article  CAS  Google Scholar 

  38. Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR (2010) Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 10(4):1374–1382. https://doi.org/10.1021/nl100010v

    Article  CAS  Google Scholar 

  39. Cros S, Penhoat CH, Bouchemal N, Ohassan H, Imberty A, Pérez S (1992) Solution conformation of a pectin fragment disaccharide using molecular modeling and nuclear magnetic resonance. Int J Biol Macromol 14:313–320. https://doi.org/10.1016/S0141-8130(05)80071-6

    Article  CAS  Google Scholar 

  40. Cha H, Lee D, Yoon JH, Yoon S (2016) Plasmon coupling between silver nanoparticles: transition from the classical to the quantum regime. J Coll Int Sci 464:18–24. https://doi.org/10.1016/j.jcis.2015.11.009

    Article  CAS  Google Scholar 

  41. Ernest V, Shiny PJ, Mukherjee A, Chandrasekaran N (2012) Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase. Carbohydr Res 352:60–64. https://doi.org/10.1016/j.carres.2012.02.009

    Article  CAS  Google Scholar 

  42. Perrin F (1934) Mouvement brownien d’un ellipsoide – I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys le Radium 5(10):497–511. https://doi.org/10.1051/jphysrad:01934005010049700

    Article  CAS  Google Scholar 

  43. Pieczywek PM, Cieśla J, Płaziński W, Zdunek A (2021) Aggregation and weak gel formation by pectic polysaccharide homogalacturonan. Carbohydr Polym 256:117566. https://doi.org/10.1016/j.carbpol.2020.117566

    Article  CAS  Google Scholar 

  44. Khlebtsov NG, Melnikov AG, Bogatyrev VA, Dykman LA, Alekseeva AY, Trachuk LA, Khlebtsov BN (2005) Can the light scattering depolarization ratio of small particles be greater than 1/3? J Phys Chem B 109(28):13578–13584. https://doi.org/10.1021/jp0521095

    Article  CAS  Google Scholar 

  45. Zhou Y, Yan L, Maji T, Lévêque G, Gkikas M, Fytas G (2020) Harnessing polymer grafting to control the shape of plasmonic nanoparticles. J Appl Phys 127(7):074302. https://doi.org/10.1063/1.5140459

    Article  CAS  Google Scholar 

  46. Gasilova ER, Aleksandrova GP (2011) Influence of gold content on colloidal structure of gold nanoparticles capped with arabinogalactan. J Phys Chem C 115(50):246270–24635. https://doi.org/10.1021/jp208680j

    Article  CAS  Google Scholar 

  47. Hooshmand N, El-Sayed MA (2019) Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces. Proc Natl Acad Sci U S A 116(39):19299–19304. https://doi.org/10.1073/pnas.1909416116

    Article  CAS  Google Scholar 

  48. Kim M, Kwon H, Lee S, Yoon S (2019) Effect of Nanogap Morphology on Plasmon Coupling. ACS Nano 13(10):12100–12108. https://doi.org/10.1021/acsnano.9b06492

    Article  CAS  Google Scholar 

  49. Morris ER, Powell DA, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins I Polymorphism between gel and solid states of calcium polygalacturonate. J Mol Biol 155(4):507–516. https://doi.org/10.1016/0022-2836(82)90484-3

    Article  CAS  Google Scholar 

Download references

Funding

This work did not receive any funding. The salary of ERG was paid under the state program AAAA-A20120022090038 − 1.

Author information

Authors and Affiliations

Authors

Contributions

ERG—conceptualization, supervising, writing original draft, investigation; GPA—supervising, editing original draft, synthesis, investigation; IVT—investigation; NVD—investigation; ENV—investigation; DPR—investigation.

Corresponding author

Correspondence to Ekaterina R. Gasilova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 781 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasilova, E.R., Alexandrova, G.P., Tyshkunova, I.V. et al. Optically active pH-dependent colloids of silver nanoparticles capped by polygalacturonic acid. J Nanopart Res 25, 10 (2023). https://doi.org/10.1007/s11051-022-05660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05660-8

Keywords

Navigation