Skip to main content
Log in

Vancomycin modified graphene oxide as carriers to load phthalocyanine for synergistic phototherapy of vancomycin-resistant bacteria

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Overuse of antibiotics has led to the emergency of vancomycin-resistant Enterococcus (VRE), considered one of the leading causes of severe diseases and even death. The phototherapy strategy of combined photothermal therapy (PTT) and photodynamic therapy (PDT) has achieved considerable attention since it could effectively enhance synergistic efficacy and avoid new drug resistance. In this paper, a kind of hybrid nanocomposite was fabricated and applied in the phototherapy-based combination strategy against VRE pathogens, in which graphene oxide (GO) not only covalent conjugated with vancomycin (Van) but also loaded photosensitizer phthalocyanine (Pc) via π–π stacking interaction. Outstanding PTT and PDT effects were observed in the as-prepared nanocomposite (GO@Van@Pc), giving almost 2–3 logs of bacterial reduction in vitro. Similar data were also obtained when GO@Van@Pc was used to treat VRE-infected BALB/C mice, exhibiting obvious infection regression and accelerated wound healing with negligible damage to normal cells and major organs. Therefore, the as-prepared GO@Van@Pc integrating PTT and PDT has great potential in the phototherapy of drug-resistant pathogens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eisenberger D, Tuschak C, Werner M, Bogdan C, Bollinger T, Hossain H, Friedrich P, Hussein Z, Pohlmann C, Wurstl B, Nickel S, Lehner-Reindl V, Holler C, Liebl B, Valenza G (2020) Whole-genome analysis of vancomycin-resistant Enterococcus faecium causing nosocomial outbreaks suggests the occurrence of few endemic clonal lineages in Bavaria, Germany. J Antimicrob Chemother 75(6):1398–1404. https://doi.org/10.1093/jac/dkaa041

    Article  Google Scholar 

  2. Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, Flaherty DP (2020) Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant Enterococcus. J Med Chem 63(17):9540–9562. https://doi.org/10.1021/acs.jmedchem.0c00734

    Article  Google Scholar 

  3. Zou Z, Sun J, Li Q, Pu Y, Liu J, Sun R, Wang L, Jiang T (2020) Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant Enterococci bacteria. Colloids Surf B Biointerfaces 189:110875. https://doi.org/10.1016/j.colsurfb.2020.110875

    Article  Google Scholar 

  4. Jelinkova P, Splichal Z, Jimenez AMJ, Haddad Y, Mazumdar A, Sur VP, Milosavljevic V, Kopel P, Buchtelova H, Guran R, Zitka O, Richtera L, Hegerova D, Heger Z, Moulick A, Adam V (2018) Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect Drug Resist 11:1807–1817. https://doi.org/10.2147/IDR.S160975

    Article  Google Scholar 

  5. Zhou Z, Peng S, Sui M, Chen S, Huang L, Xu H, Jiang T (2018) Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. Colloids Surf B Biointerfaces 161:394–402. https://doi.org/10.1016/j.colsurfb.2017.11.005

    Article  Google Scholar 

  6. Eichel V, Klein S, Bootsveld C, Frank U, Heeg K, Boutin S, Nurjadi D (2020) Challenges in interpretation of WGS and epidemiological data to investigate nosocomial transmission of vancomycin-resistant Enterococcus faecium in an endemic region: incorporation of patient movement network and admission screening. J Antimicrob Chemother 75(7):1716–1721. https://doi.org/10.1093/jac/dkaa122

    Article  Google Scholar 

  7. Dos Santos EMP, Martins CCB, de Oliveira Santos JV, da Silva WRC, Silva SBC, Pelagio-Flores MA, Galembeck A, Cavalcanti IMF (2021) Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition. J Nanopart Res 23(8):196. https://doi.org/10.1007/s11051-021-05314-1

    Article  Google Scholar 

  8. Moreno-Valle B, Alatorre-Barajas JA, Gochi-Ponce Y, Alcántar-Zavala E, Rivera-Lugo YY, Montes-Ávila J, Trujillo-Navarrete B, Alonso-Núñez G, Reynoso-Soto EA, Ochoa-Terán A (2020) MWCNT-oxazolidinone conjugates with antibacterial activity. J Nanopart Res 22(11):315. https://doi.org/10.1007/s11051-020-05044-w

    Article  Google Scholar 

  9. Wang R, Kim D, Yang M, Li X, Yoon J (2022) Phthalocyanine-assembled “one-for-two” nanoparticles for combined photodynamic-photothermal therapy of multidrug-resistant bacteria. ACS Appl Mater Interfaces 14(6):7609–7616. https://doi.org/10.1021/acsami.1c21891

    Article  Google Scholar 

  10. ElZorkany HE, Youssef T, Mohamed MB, Amin RM (2019) Photothermal versus photodynamic treatment for the inactivation of the bacteria Escherichia coli and Bacillus cereus: an in vitro study. Photodiagnosis Photodyn Ther 27:317–326. https://doi.org/10.1016/j.pdpdt.2019.06.020

    Article  Google Scholar 

  11. Shen T, Hu X, Liu Y, Zhang Y, Chen K, Xie S, Ke G, Song G, Zhang XB (2020) Specific core-satellite nanocarriers for enhanced intracellular ROS generation and synergistic photodynamic therapy. ACS Appl Mater Interfaces 12(5):5403–5412. https://doi.org/10.1021/acsami.9b16934

    Article  Google Scholar 

  12. Zheng P, Fan M, Liu H, Zhang Y, Dai X, Li H, Zhou X, Hu S, Yang X, Jin Y, Yu N, Guo S, Zhang J, Liang XJ, Cheng K, Li Z (2021) Self-propelled and near-infrared-phototaxic photosynthetic bacteria as photothermal agents for hypoxia-targeted cancer therapy. ACS Nano 15(1):1100–1110. https://doi.org/10.1021/acsnano.0c08068

    Article  Google Scholar 

  13. Bacali C, Carpa R, Buduru S, Moldovan ML, Baldea I, Constantin A, Moldovan M, Prodan D, Dascalu Rusu LM, Lucaciu O, Catoi F, Constantiniuc M, Badea M (2021) Association of graphene silver polymethyl methacrylate (PMMA) with photodynamic therapy for inactivation of halitosis responsible bacteria in denture wearers. Nanomaterials (Basel) 11(7):1643. https://doi.org/10.3390/nano11071643

    Article  Google Scholar 

  14. Yougbare S, Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, Cheng TM, Kuo TR (2020) Nanomaterials for the photothermal killing of bacteria. Nanomaterials (Basel) 10(6):1123. https://doi.org/10.3390/nano10061123

    Article  Google Scholar 

  15. Chen Z, Tu Y, Zhang D, Liu C, Zhou Y, Li X, Wu X, Liu R (2020) A thermosensitive nanoplatform for photoacoustic imaging and NIR light triggered chemo-photothermal therapy. Biomater Sci 8(15):4299–4307. https://doi.org/10.1039/d0bm00810a

    Article  Google Scholar 

  16. Yougbare S, Chou HL, Yang CH, Krisnawati DI, Jazidie A, Nuh M, Kuo TR (2021) Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J Hazard Mater 407:124617. https://doi.org/10.1016/j.jhazmat.2020.124617

    Article  Google Scholar 

  17. Xing B, Jiang T, Bi W, Yang Y, Li L, Ma M, Chang CK, Xu B, Yeow EK (2011) Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria. Chem Commun (Camb) 47(5):1601–1603. https://doi.org/10.1039/c0cc04434b

    Article  Google Scholar 

  18. Jiao X, Zhang W, Zhang L, Cao Y, Xu Z, Kang Y, Xue P (2020) Rational design of oxygen deficient TiO2-x nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer. Nanoscale 12(3):1707–1718. https://doi.org/10.1039/c9nr09423g

    Article  Google Scholar 

  19. Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ (2020) An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy. Adv Mater 32(36):e2003210. https://doi.org/10.1002/adma.202003210

    Article  Google Scholar 

  20. Wang Y, Gong N, Li Y, Lu Q, Wang X, Li J (2020) Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. J Am Chem Soc 142(4):1735–1739. https://doi.org/10.1021/jacs.9b11553

    Article  Google Scholar 

  21. Zhao X, Long S, Li M, Cao J, Li Y, Guo L, Sun W, Du J, Fan J, Peng X (2020) Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy. J Am Chem Soc 142(3):1510–1517. https://doi.org/10.1021/jacs.9b11800

    Article  Google Scholar 

  22. Qi X, Jiang F, Zhou M, Zhang W, Jiang X (2021) Graphene oxide as a promising material in dentistry and tissue regeneration: a review. Smart Materials in Medicine 2:280–291. https://doi.org/10.1016/j.smaim.2021.08.001

    Article  Google Scholar 

  23. Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV (2019) Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep 9(1):416. https://doi.org/10.1038/s41598-018-36617-4

    Article  Google Scholar 

  24. Han JL, Xia X, Tao Y, Yun H, Hou YN, Zhao CW, Luo Q, Cheng HY, Wang AJ (2016) Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux. Water Res 102:619–628. https://doi.org/10.1016/j.watres.2016.06.032

    Article  Google Scholar 

  25. Singh V, Kumar V, Kashyap S, Singh AV, Kishore V, Sitti M, Saxena PS, Srivastava A (2019) Graphene oxide synergistically enhances antibiotic efficacy in vancomycin-resistant Staphylococcus aureus. ACS Appl Bio Mater 2(3):1148–1157. https://doi.org/10.1021/acsabm.8b00757

    Article  Google Scholar 

  26. Di Crescenzo A, Zara S, Di Nisio C, Ettorre V, Ventrella A, Zavan B, Di Profio P, Cataldi A, Fontana A (2019) Graphene oxide foils as an osteoinductive stem cell substrate. ACS Appl Bio Mater 2(4):1643–1651. https://doi.org/10.1021/acsabm.9b00041

    Article  Google Scholar 

  27. Ma G, Qi J, Cui Q, Bao X, Gao D, Xing C (2020) Graphene oxide composite for selective recognition, capturing, photothermal killing of bacteria over mammalian cells. Polymers (Basel) 12(5):1116. https://doi.org/10.3390/polym12051116

    Article  Google Scholar 

  28. Wu J, Li Z, Li Y, Pettitt A, Zhou F (2018) Photothermal effects of reduced graphene oxide on pancreatic cancer. Technol Cancer Res Treat 17:1533034618768637. https://doi.org/10.1177/1533034618768637

    Article  Google Scholar 

  29. Wang H, Chen T, Wu S, Chu X, Yu R (2012) A novel biosensing strategy for screening G-quadruplex ligands based on graphene oxide sheets. Biosens Bioelectron 34(1):88–93. https://doi.org/10.1016/j.bios.2012.01.023

    Article  Google Scholar 

  30. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84(14):6263–6270. https://doi.org/10.1021/ac301534w

    Article  Google Scholar 

  31. He X, Zhou Z, Han Z, Zeng Y, Chen X, Su J (2019) Mechanism of controlled release of vancomycin from crumpled graphene oxides. ACS Omega 4(7):12252–12258. https://doi.org/10.1021/acsomega.9b00873

    Article  Google Scholar 

  32. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133(46):18931. https://doi.org/10.1021/ja2080345

    Article  Google Scholar 

  33. Tian B, Wang C, Zhang S, Feng L, Liu Z (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9):7000–7009. https://doi.org/10.1021/nn201560b

    Article  Google Scholar 

  34. Yin M, Yang M, Yan D, Yang L, Wan X, Xiao J, Yao Y, Luo J (2022) Surface-charge-switchable and size-transformable thermosensitive nanocomposites for chemo-photothermal eradication of bacterial biofilms in vitro and in vivo. ACS Appl Mater Interfaces 14(7):8847–8864. https://doi.org/10.1021/acsami.1c24229

    Article  Google Scholar 

  35. Zhang C, Huang L, Sun DW, Pu H (2022) Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. J Hazard Mater 426:127824. https://doi.org/10.1016/j.jhazmat.2021.127824

    Article  Google Scholar 

  36. Xu LQ, Liao YB, Li NN, Li YJ, Zhang JY, Wang YB, Hu XF, Li CM (2018) Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. J Colloid Interface Sci 514:733–739. https://doi.org/10.1016/j.jcis.2018.01.014

    Article  Google Scholar 

  37. Mirzaie V, Ansari M, Nematollahi-Mahani SN, MoballeghNasery M, Karimi B, Eslaminejad T, Pourshojaei Y (2020) Nano-graphene oxide-supported APTES-spermine, as gene delivery system, for transfection of pEGFP-p53 into breast cancer cell lines. Drug Des Dev Ther 14:3087–3097. https://doi.org/10.2147/DDDT.S251005

    Article  Google Scholar 

  38. Liu Z, Zhu Y, Liu X, Yeung KWK, Wu S (2017) Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids Surf, B 151:165–177. https://doi.org/10.1016/j.colsurfb.2016.12.016

    Article  Google Scholar 

  39. Dinache A, Boni M, Alexandru T, Radu E, Stoicu A, Andrei IR, Staicu A, Liggieri L, Nastasa V, Pascu ML, Ferrari M (2015) Surface properties of vancomycin after interaction with laser beams. Colloids Surf, A 480:328–335

    Article  Google Scholar 

  40. Anaya-Plaza E, Aljarilla A, Beaune G, Nonappa TJVI, de la Escosura A, Torres T, Kostiainen MA (2019) Phthalocyanine-virus nanofibers as heterogeneous catalysts for continuous-flow photo-oxidation processes. Adv Mater 31(39):e1902582. https://doi.org/10.1002/adma.201902582

    Article  Google Scholar 

  41. Wan W, Triana CA, Lan J, Li J, Allen CS, Zhao Y, Iannuzzi M, Patzke GR (2020) Bifunctional single atom electrocatalysts: coordination-performance correlations and reaction pathways. ACS Nano 14(10):13279–13293. https://doi.org/10.1021/acsnano.0c05088

    Article  Google Scholar 

  42. Zhang G, Liu B, Zhang Y, Li T, Chen W, Zhao W (2020) Study on the effects of a pi electron conjugated structure in binuclear metallophthalocyanines graphene-based oxygen reduction reaction catalysts. Nanomaterials 10(5):946. https://doi.org/10.3390/nano10050946

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Natural Science Foundation of Shandong Province, China (ZR2020MC079, ZR2014BP004), National Natural Science Foundation of China (21505066), and a project of Shandong Province Higher Educational Science and Technology Program, China (J18KA265).

Author information

Authors and Affiliations

Authors

Contributions

Huijie Wang: Data curation, Writing an original draft. Xiaoli Yu: Methodology, Data curation, Formal analysis. Qixian Li: Methodology, Formal analysis. Jingru Zhu: Formal analysis, Data curation. Juan Ding: Data curation. Tingting Jiang: Supervision, Conceptualization, Methodology, Writing review and editing. All the authors reviewed and edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Tingting Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, X., Li, Q. et al. Vancomycin modified graphene oxide as carriers to load phthalocyanine for synergistic phototherapy of vancomycin-resistant bacteria. J Nanopart Res 24, 234 (2022). https://doi.org/10.1007/s11051-022-05608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05608-y

Keywords

Navigation