Skip to main content
Log in

MOF-derived Ni-Co sulfide nanotubes/GO nanocomposites as electrode materials for supercapacitor applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ni-Co sulfide nanotubes/graphene oxide porous nanotubes are synthesized by chemical replacement method and MOF-based template method at room temperature. Experiments show that the graphene oxide effectively reduces the inactive material and increases the electroactive surface area, which is quite effective for achieving high utilization efficiency under high electroactive materials mass loading. When used as an electrochemical supercapacitor electrode material, the prepared composite has high specific capacitance (2506 F g−1 at 0.5 A g−1), excellent rate performance (51.8% of capacitance retention ranges from 0.5 to 10 A g−1), and good cycle stability (58% of capacitance retention after 6000 cycles). Its excellent electrochemical properties are mainly due to the synergistic effect of Ni-Co sulfide nanotubes and GO, which the former could deliver abundant active sites and the latter could have excellent electron conductivity. Then, it could deliver a new way to prepare high electrochemical performance of electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, Lin H, Sun X, Peng H (2012) Inside cover an integrated energy wire for both photoelectric conversion and energy storage. Angewandte Chemie International Edition 51:11908–11908

  2. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  3. Li Y, Han X, Yi T, He Y, Li X (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78

    Article  Google Scholar 

  4. Saha S, Samanta P, Murmu NC, Kuila T (2018) A review on the heterostructure nanomaterials for supercapacitor application. Journal of Energy Storage 17:181–202

    Article  Google Scholar 

  5. Kim D-Y, Ghodake G, Maile N, Kadam A, Sung Lee D, Fulari V, Shinde S (2017) Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Sci Rep 7:1–10

    Google Scholar 

  6. Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728

    Article  Google Scholar 

  7. Yang Y et al (2022) Enhanced electrochemical O2-to-H2O2 synthesis via Cu-Pb synergistic interplay. Small 18:2106534

    Article  CAS  Google Scholar 

  8. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive Nico2s4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831

    Article  CAS  Google Scholar 

  9. Liu T. Jiang C. Cheng B. You W. Yu J (2017) Hierarchical Nis/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J Mater Chem A 5:21257–21265

  10. Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649–7651

  11. Wei L. Wu Q. Li J. (2021) Review of NiCo2S4 nanostructures and their composites used in supercapacitors. J Mater Sci Mater Electron 32:12966–12990

  12. Chen D, Wei L, Li J, Wu Q (2020) Nanoporous materials derived from metal-organic framework for supercapacitor application. Journal of Energy Storage 30:101525

    Article  Google Scholar 

  13. Hu X, Chen R, Wu Q, Li J (2021) Flower-like Ni-Co hydroxides combined with mascroporous carbon tubes derived from eggplant as electrodes for supercapacitor application. Ionics 27:429–436

    Article  CAS  Google Scholar 

  14. Payami E, Teimuri-Mofrad R (2021) A novel ternary Fe3O4@FC-GO/Pani nanocomposite for outstanding supercapacitor performance. Electrochim Acta 383:138296

    Article  CAS  Google Scholar 

  15. Wang P, Tao L, Luo H, Chen D, Xie Z (2018) Organosilica-based ionogel derived nitrogen-doped microporous carbons for high performance supercapacitor electrodes. Inorganic Chemistry Frontiers 5:3091–3098

    Article  CAS  Google Scholar 

  16. Hao Z, Yuan T, Dong Q, Singh K, Voznyy O (2021) Underappreciated role of low-energy facets in nitrogen electroreduction. ACS Materials Letters 3:327–330

    Article  CAS  Google Scholar 

  17. Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing material for Nh3: SnO2-nanorods coupled by Rgo. Sens Actuators, B Chem 242:1216–1226

    Article  CAS  Google Scholar 

  18. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    Article  CAS  Google Scholar 

  19. Zhou H, Han G, Xiao Y, Chang Y, Zhai HJ (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267

  20. Li F, Xu R, Li Y, Liang F, Zhang D, Fu WF, Lv XJ (2019) N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 145:521–528

    Article  CAS  Google Scholar 

  21. Jing Y, Chunxiao L, Lu Z, Lixue Z, Zonghua W, Qingyun L (2018) Reverse Microemulsion‐Assisted Synthesis of NiCo2S4 Nanoflakes Supported on Nickel Foam for Electrochemical Overall Water Splitting. Adv Mater Interfaces 5:1701396

  22. Zhang Y, Zhang Y, Zhang Y, Si H, Sun L (2019) Bimetallic Nico2s4 nanoneedles anchored on mesocarbon microbeads as advanced electrodes for asymmetric supercapacitors. Nano-Micro Lett 11:1–15

  23. Chen H, Jiang J, Zhao Y, Zhang L, Guo D, Xia D (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Materials Chem A 3:428–437

    Article  CAS  Google Scholar 

  24. Qin K, Wang L, Wen S, Diao L, Liu P, Li J, Ma L, Shi C, Zhong C, Hu W (2018) Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. Journal of Materials Chemistry A 6:8109–8119

    Article  CAS  Google Scholar 

  25. Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3−XS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem 126:3785–3788

    Article  Google Scholar 

  26. Zan G, Wu T, Dong W, Zhou J, Tu T, Xu R, Chen Y, Wang Y, Wu Q (2022) Two-level biomimetic designs enable intelligent stress dispersion for super-foldable C/NiS nanofiber free-standing electrode. Advanced Fiber Materials 4:1177–1190

  27. Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80

    Article  CAS  Google Scholar 

  28. Li J, Zan G, Wu Q (2016) An ultra-high-performance anode material for supercapacitors: self-assembled long Co3O4 hollow tube network with multiple heteroatom (C-, N-and S-) doping. J Materials Chem A 4:9097–9105

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Science and Technology Project of Lishui City (2021GYX12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Chen or Jiangfeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 864 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Li, J., Chen, R. et al. MOF-derived Ni-Co sulfide nanotubes/GO nanocomposites as electrode materials for supercapacitor applications. J Nanopart Res 24, 230 (2022). https://doi.org/10.1007/s11051-022-05606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05606-0

Keywords

Navigation