Skip to main content
Log in

Novel insights into acute/chronic genotoxic impact of exposure to tungsten oxide nanoparticles on Drosophila melanogaster

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Tungsten oxide nanoparticles (WO3 NPs) have now been employed by various products including electronics, smart screens, gas-biosensors, water purifiers, disinfectants, and biomedical applications. Despite this wide-ranging adoption, little research has investigated their potential endpoint biomarkers in different in vivo models. We therefore propose the use of Drosophila melanogaster as a testing model in assessing genotoxic risks of exposure to WO3 NPs. Our study examined toxicity, phenotypic alterations, locomotor behavior (climbing assay), intracellular oxidative stress (ROS), DNA damage (Comet assay), and somatic recombination (wing spot assay) in Drosophila melanogaster after exposure to WO3 NPs (43.71 ± 1.59 nm) and microparticulated (MPs) of WO3. Drosophila larvae were exposed to the test materials via ingestion at doses ranging between 1 and 10 mM, and two greatest doses of NPs (5 and 10 mM) were found to cause mutagenic/recombinogenic effects, while the MPs caused no effects. Wing-spot assay detected genotoxic activity of NPs mostly through somatic recombination, and Comet assay showed DNA damage after exposure to NPs at certain doses (1, 2.5, 5, and 10 mM). Other observations included ROS generation in hemocytes, phenotypic alterations in the mouths and wings of adult flies, and impaired locomotor behavior. This is the first research to report genotoxic evidence on the impact of WO3 exposure in Drosophila larvae, highlighting the significance of this model organism in exploring the potential biological impact of nanoparticles and MPs of WO3. The results of our in vivo testing should make a vital contribution to the existing database on the genotoxicity of WO3 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hasan S (2015) A review on nanoparticles: their synthesis and types biosynthesis: mechanism. Res J Recent Sci 4:9–11

    Google Scholar 

  2. Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137

    CAS  Google Scholar 

  3. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    CAS  Google Scholar 

  4. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    CAS  Google Scholar 

  5. Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R (2020) In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci Nano 7:610–622

    CAS  Google Scholar 

  6. Demir E (2021) Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J Toxicol Environ Health Part A 84:649–660

    CAS  Google Scholar 

  7. Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396–403

    CAS  Google Scholar 

  8. Chinde S, Grover P (2017) Toxicological assessment of nano and micron-sized tungsten oxide after 28 days repeated oral administration to Wistar rats. Mutat Res Genet Toxicol Environ Mutagen 819:1–13

    CAS  Google Scholar 

  9. Erik L, Wolf-Dieter S (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic, USA

    Google Scholar 

  10. Zhou G, Hou Y, Liu L, Liu H, Liu C, Liu J, Qiao H, Liu W, Fan Y, Shen S, Rong L (2012) Preparation and characterization of NiW-nHA composite catalyst for hydrocracking. Nanoscale 4:7698–7703

    CAS  Google Scholar 

  11. Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528

    CAS  Google Scholar 

  12. Granqvist CG (2014) Electrochromics for smart windows: oxide based thin films and devices. Thin Solid Films 564:1–38

    CAS  Google Scholar 

  13. Hu L, Hu P, Chen Y, Lin Z, Qiu C (2018) Synthesis and gas-sensing property of highly self-assembled tungsten oxide nanosheets. Front Chem 6:452

    CAS  Google Scholar 

  14. Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z (2012) Ultrathin, single-crystal wo3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377

    CAS  Google Scholar 

  15. Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo MH (2009) Ag/AgBr/WO3·H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–10702

    CAS  Google Scholar 

  16. Ahmed S, Hassan IAI, Roy H, Marken F (2013) Photoelectrochemical transients for chlorine/hypochlorite formation at “Roll-On” nano-WO3 film electrodes. J Phys Chem C 117:7005–7012

    CAS  Google Scholar 

  17. Hasegawa G, Shimonaka M, Ishihara Y (2012) Differential genotoxicity of chemical properties and particle size of rare metal and metal oxide nanoparticles. J Appl Toxicol 32:72–80

    CAS  Google Scholar 

  18. Turkez H, Sonmez E, Turkez O, Mokhtar YI, Stefano AD, Turgut G (2014) The risk evaluation of tungsten oxide nanoparticles in cultured rat liver cells for its safe applications in nanotechnology. Braz Arch Biol Technol 57:532–541

    CAS  Google Scholar 

  19. Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, Kahru A (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 5:1914–1929

    Google Scholar 

  20. Chinde S, Dumala N, Rahman MF, Kamal SSK, Kumari SI, Mahboob M, Grover P (2017) Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure. Environ Sci Pollut Res 24:13576–13593

    CAS  Google Scholar 

  21. Hassanvand A, Zare MH, Shams A, Nickfarjam A, Shabani M, Rahavi H (2019) Investigation of the effect of radiosensitization of tungsten oxide nanoparticles on AGS cell line of human stomach cancer in megavoltage photons radiation. J Nanostructures 9:563–578

    CAS  Google Scholar 

  22. Akbaba BG, Turkez H, Sonmez E, Akbaba U, Aydın E, Tatar A, Turgut G, Cerig S (2016) In vitro genotoxicity evaluation of tungsten (VI) oxide nanopowder using human lymphocytes. Biomed Res 27:229–234

    CAS  Google Scholar 

  23. Turkez H, Cakmak B, Celik K (2013) Evaluation of the potential in vivo genotoxicity of tungsten (VI) oxide nanopowder for human health. Key Eng Mater 543:89–92

    Google Scholar 

  24. Prajapati MV, Adebolu OO, Morrow BM, Cerreta JM (2017) Evaluation of pulmonary response to inhaled tungsten (iv) oxide nanoparticles in golden syrian hamsters. Exper Biol Med 242:29–44

    CAS  Google Scholar 

  25. Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, Parizek NJ, Altmaier R, Haque E, O’Shausghnessy PT, Salem AK, Thorne PS (2020) Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact 18:100214

    Google Scholar 

  26. Mao L, Zheng L, You H, Ullah MW, Cheng H, Guo Q, Li R (2021) A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. Environ Sci Pollut Res 28:40793–40807

    CAS  Google Scholar 

  27. Contreras EQ, Cho M, Zhu H, Puppala HL, Escalera G, Zhong W, Colvin VL (2012) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154

    Google Scholar 

  28. Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, Sprando RL (2013) Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33:1131–1142

    CAS  Google Scholar 

  29. Chatterjee N, Eom HJ, Choi J (2014) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–133

    CAS  Google Scholar 

  30. Chatterjee N, Yang J, Kim HM (2014) Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health Part A 77:1399–1408

    CAS  Google Scholar 

  31. Pappus SA, Mishra M (2018) A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Adv Exp Med Biol 1048:311–322

    CAS  Google Scholar 

  32. Gao M, Zhang Z, Lv M, Song W, Lv Y (2018) Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol Environ Saf 148:261–268

    CAS  Google Scholar 

  33. Shariati F, Poordeljoo T, Zanjanchi P (2020) The acute toxicity of SiO2 and Fe3O4 nano-particles on Daphnia magna. SILICON 12:2941–2946

    CAS  Google Scholar 

  34. Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19(4):136

    Google Scholar 

  35. Anand AS, Gahlot U, Prasad DN, Amitabh Kohli E (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989

    CAS  Google Scholar 

  36. Demir E (2020) An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J Toxicol Environ Health Part A 83:456–469

    CAS  Google Scholar 

  37. Mendoza RP, Brown JM (2019) Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr Opin Toxicol 13:74–80

    Google Scholar 

  38. Dan P, Sundararajan V, Ganeshkumar H, Gnanabarathi B, Subramanian AK, Venkatasubu GD, Ichihara SS (2019) Evaluation of hydroxyapatite nanoparticles-induced in vivo toxicity in Drosophila melanogaster. Appl Surf Sci 484:568–577

    CAS  Google Scholar 

  39. Mishra M, Panda M (2021) Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 55:919–935

    Google Scholar 

  40. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 88:1114–1125

    Google Scholar 

  41. Demir E, Turna Demir F, Marcos R (2022) Drosophila as a suitable in vivo model in the safety assessment of nanomaterials. Adv Exp Med Biol 1357:275–301

    Google Scholar 

  42. Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) From the cover: Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci 103:1394–1399

    CAS  Google Scholar 

  43. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23

    CAS  Google Scholar 

  44. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183

    CAS  Google Scholar 

  45. Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H (2007) A conditional pan neuronal drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci Res 27:2483–2492

    CAS  Google Scholar 

  46. Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171

    CAS  Google Scholar 

  47. Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insightsFrom Drosophila melanogaster models. Trends Biochem Sci 35:228–235

    CAS  Google Scholar 

  48. Ng CT, Ong CN, Yu LE, Bay BH, Baeg GH (2019) Toxicity study of zinc oxide nanoparticles in cell culture and in Drosophila melanogaster. J Vis Exp 151:e59510

    Google Scholar 

  49. Flecknell P (2002) Replacement, reduction and refinement. Altex 19:73–78

    Google Scholar 

  50. Jennings BH (2011) Drosophila-a versatile model in biology & medicine. Mater Today 14:190–195

    Google Scholar 

  51. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83

    CAS  Google Scholar 

  52. Rand MD, Vorojeikina D, Peppriell A, Gunderson J, Prince LM (2019) Drosophotoxicology: elucidating kinetic and dynamic pathways of methylmercury toxicity in a Drosophila model. Front Genet 10:666

    CAS  Google Scholar 

  53. Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36

    Google Scholar 

  54. Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Branca F, Castegnaro JJ, Descotes J, Hemminiki K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. ATLA 28:119–131

    Google Scholar 

  55. Rajak P, Dutta M, Roy S (2015) Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of acephate. Interdiscip Toxicol 8:84–88

    CAS  Google Scholar 

  56. Festing MFW, Baumans V, Combes DR, Hadler M, Hendriksen FM, Howard BR, Lovell DP, Moore GJ, Overend P, Wilson MS (1998) Reducing the use of laboratory animals in biomedical research: problems and possible solutions. Altern Lab Anim 26:283–301

    CAS  Google Scholar 

  57. Demir E, Marcos R (2018) Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 12:868–884

    CAS  Google Scholar 

  58. Demir E (2022) Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J Appl Toxicol 42:450–474

    CAS  Google Scholar 

  59. Demir E, Turna F, Aksakal S, Kaya B, Marcos R (2014) Genotoxicity of different sweeteners in Drosophila. Fresenius Environ Bull 23:3426–3432

    Google Scholar 

  60. Demir E, Marcos R (2017) Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae. Food Chem Toxicol 105:1–7

    CAS  Google Scholar 

  61. Nanogenotox (2011) http://www.nanogenotox.eu/files/PDF/Deliverables/nanogenotox%20deliverable%203_wp4_%20dispersion%20protocol.pdf

  62. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Google Scholar 

  63. Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96

    CAS  Google Scholar 

  64. Martinez VG, Javadi CS, Ngo E, Ngo L, Lagow RD, Zhang B (2007) Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Dev Neurobiol 67:778–791

    CAS  Google Scholar 

  65. Anand AS, Prasad DN, Singh SB, Kohli E (2017) Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J Hazard Mater 327:180–186

    CAS  Google Scholar 

  66. Priyadarsini S, Sahoo SK, Sahu S, Mukherjee S, Hota G, Mishra M (2019) Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ Sci Pollut Res 26:19560–19574

    CAS  Google Scholar 

  67. Mishra M, Sabat D, Ekka B, Sahu S, Unnikannan P, Dash P (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19:282

    Google Scholar 

  68. Sood K, Kaur J, Singh H, Arya SK, Khatri M (2019) Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep 6:768–781

    CAS  Google Scholar 

  69. Graf U, Würgler FE, Katz AJ, Frei H, Juan H, Hall CB, Kale PG (1984) Somatic mutation and recombination test in Drosophila melanogaster. Environ Mol Mutagen 6:153–188

    CAS  Google Scholar 

  70. Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego, CA

    Google Scholar 

  71. Turna F, Aksakal S, Demir E, Kaya B (2014) Antigenotoxic effects of Resveratrol in somatic cells of Drosophila melanogaster. Fresenius Environ Bull 23:2116–2125

    CAS  Google Scholar 

  72. Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7:335–350

    CAS  Google Scholar 

  73. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  Google Scholar 

  74. Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, Mukherjee A (2012) in vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69

    CAS  Google Scholar 

  75. Tice RR, Andrews PW, Singh N (1990) The single cell gel assay. A sensitive technique for evaluating intercellular differences in DNA damage and repair. B.M. Sutherland, A.D. Wordhead (Eds.), DNA damage and repair in human tissues, Plenum, New York, NY (1990), pp. 291–302

  76. Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A (2004) Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay. Mutagenesis 19:85–90

    CAS  Google Scholar 

  77. Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A (2005) Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis 20:285–290

    CAS  Google Scholar 

  78. Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A (2003) A cross-platform public domain pc image-analysis program for the comet assay. Mutat Res-Genet Toxicol Environ Mutagen 534:15–20

    Google Scholar 

  79. Turna Demir F, Yavuz M (2020) Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities. Environ Pollut 256:113378

    CAS  Google Scholar 

  80. Kastenbaum MA, Bowman KO (1970) Tables for determining the statistical significance of mutation frequencies. Mutat Res 9:527–549

    CAS  Google Scholar 

  81. Frei H, Würgler FE (1995) Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutat Res 334:247–225

    CAS  Google Scholar 

  82. Frei H, Würgler FE (1988) Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutat Res 203:297–308

    CAS  Google Scholar 

  83. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57

    Google Scholar 

  84. Demir E, Vales G, Kaya B, Creus A, Marcos R (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424

    CAS  Google Scholar 

  85. Turna Demir F (2022) In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. J Toxicol Environ Health Part A 85:414–430

    CAS  Google Scholar 

  86. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size. Toxicol Lett 188:112–118

    CAS  Google Scholar 

  87. Arnold M, Badireddy A, Wiesner M, Di Giulio R, Meyer J (2013) Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–233

    CAS  Google Scholar 

  88. Vales G, Demir E, Kaya B, Creus A, Marcos R (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468

    CAS  Google Scholar 

  89. Demir E, Aksakal S, Turna F, Kaya B, Marcos R (2015) In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. J Hazard Mater 283:260–266

    CAS  Google Scholar 

  90. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Google Scholar 

  91. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    CAS  Google Scholar 

  92. Klien K, Godnić-Cvar J (2012) Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol 63:133–145

    CAS  Google Scholar 

  93. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278

    CAS  Google Scholar 

  94. Demir E, Turna F, Burgucu D, Kılıç Z, Burunkaya E, Kesmez Ö, Kaya B (2013) Genotoxicity of different nano-sizes and ions of silica nanoparticles. Fresenius Environ Bull 22:2901–2909

    CAS  Google Scholar 

  95. Domenech J, Hernández A, Demir E, Marcos R, Cortés C (2020) Interactions of graphene oxide and graphene nanoplatelets with the in vitro caco-2/ht29 model of intestinal barrier. Sci Rep 10:1–15

    Google Scholar 

  96. Carmona ER, Guecheva TN, Creus A, Marcos R (2011) Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 52:165–169

    CAS  Google Scholar 

  97. Gaivao I, Sierra LM (2014) Drosophila comet assay: insights, uses, and future perspectives. Front Genet 5:304

    Google Scholar 

  98. Alaraby M, Annangi B, Marcos R, Hernández A (2016) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev 19:65–104

    CAS  Google Scholar 

  99. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    CAS  Google Scholar 

  100. Strawn ET, Cohen CA, Rzigalinski BA (2006) Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB J 20:A1356–A1356

    Google Scholar 

  101. Baeg E, Sooklert K, Sereemaspun A (2018) Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in Drosophila. Nanomaterials 8:824

    Google Scholar 

  102. Paithankar JG, Kushalan S, Nijil S, Hegde S, Kini S, Sharma A (2022) Systematic toxicity assessment of cdte quantum dots in Drosophila melanogaster. Chemosphere 295:133836

    CAS  Google Scholar 

  103. Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, Hong F (2010) Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater 183:874–880

    CAS  Google Scholar 

  104. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc Oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FTD and ED contributed to the conception, experimental design, experimental performance, data analysis, and writing original manuscript.

Corresponding authors

Correspondence to Fatma Turna Demir or Esref Demir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turna Demir, F., Demir, E. Novel insights into acute/chronic genotoxic impact of exposure to tungsten oxide nanoparticles on Drosophila melanogaster. J Nanopart Res 24, 215 (2022). https://doi.org/10.1007/s11051-022-05593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05593-2

Keywords

Navigation