Skip to main content
Log in

Chalcogenide perovskites for photovoltaic applications: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Owing to promising optical and electrical properties and better thermal and aqueous stability, chalcogenide perovskites have shown a wide range of applications. Chalcogenides belong to the 16th group of periodic tables and could be potential materials for the fabrication of efficient and stable (chalcogenide perovskite) solar cells. Generally, metal halide perovskites are used for the fabrication of solar cells. However, they have some grave problems like less stability and toxicity. In this context, chalcogenide perovskites (AB (S, Se)3) may be a better option due to their potential to solve the existing problems and hence could be deployed in the fabrication of high-performance solar cells. These chalcogenide perovskites have high stability (thermal and aqueous), along with their environment-friendly elemental composition. In this review, we present various techniques used for the synthesis of chalcogenide perovskites and their applications in the fabrication of solar cells. Furthermore, we have also studied the scope for the commercial development of chalcogenide perovskite–based solar cell.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24(January):38–50

    Article  Google Scholar 

  2. U.S. Energy Information Administration (2050) International energy outlook 2019 with projections to 2019

  3. Moosavian SM, Rahim NA, Selvaraj J, Solangi KH (2013) Energy policy to promote photovoltaic generation. Renew Sustain Energy Rev 25:44–58

    Article  Google Scholar 

  4. A.E. Becquerel. Recherches sur les effets de la radiation chimique de la lumiere 26 Chapter 1. Introduction solaire au moyen des courants electriques. C R Acad Sci 9:145–149, 1839.

  5. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  CAS  Google Scholar 

  6. NREL. https://www.nrel.gov/pv/cell-efficiency.html

  7. A. Jger-Waldau (2017) PV status report 2017. Report ISBN 978-92-79-74071-8, European Commission

  8. Mahmood A, Wang JL (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14(1):90–105

    Article  CAS  Google Scholar 

  9. Ahmad F, Mahmood A, Muhmood T (2021) Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater Sci 9(5):1598–1608

    Article  CAS  Google Scholar 

  10. Mahmood A, Wang JL (2021) A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A 9(28):15684–15695

    Article  CAS  Google Scholar 

  11. Mahmood A, Ahmad A, Wang JL. Developing efficient small molecule acceptors with sp2‐hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem–A Eur J 28(2):e202103712.

  12. Mahmood A, Irfan A, Wang JL (2022) Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A 10(8):4170–4180

    Article  CAS  Google Scholar 

  13. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 51). Prog Photovoltaics Res Appl 26(1):3–12

    Article  Google Scholar 

  14. Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem, Int Ed Engl 53(11):2812–2824

    Article  CAS  Google Scholar 

  15. Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77(6):803–814

    Article  CAS  Google Scholar 

  16. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovolt Res Appl 19(7):894–897

    Article  CAS  Google Scholar 

  17. Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 13(9):2746–2750

    Article  CAS  Google Scholar 

  18. Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651

    Article  CAS  Google Scholar 

  19. Gnes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    Article  CAS  Google Scholar 

  20. Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13(3):432–456

    Article  CAS  Google Scholar 

  21. Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3(10):eaao4204

  22. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  CAS  Google Scholar 

  23. Dette C, Prez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14(11):6533–6538

    Article  CAS  Google Scholar 

  24. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  Google Scholar 

  25. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514

    Article  CAS  Google Scholar 

  26. Chen Y, Zhang L, Zhang Y, Gao H, Yan H (2018) Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv 8(19):10489–10508

    Article  CAS  Google Scholar 

  27. Adjogri SJ, Meyer EL (2021) Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: a study of their properties, and potential photovoltaic applications. Materials 14(24):7857

    Article  CAS  Google Scholar 

  28. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Die Naturwissenschaften 14(21):477–485

    Article  CAS  Google Scholar 

  29. Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7(7):4548–4556

    Article  CAS  Google Scholar 

  30. Huang TJ, Thiang ZX, Yin X, Tang C, Qi G, Gong H (2016) (CH3NH3)2PdCl4: a compound with two-dimensional organic-inorganic layered perovskite structure. Chem Eur J 22(6):2146–2152

    Article  CAS  Google Scholar 

  31. Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 64(6):702–707

    Article  CAS  Google Scholar 

  32. Uribe JI, Ramirez D, Osorio-Guillen JM, Osorio J, Jaramillo F (2016) CH3NH3CaI3 perovskite: synthesis, characterization, and first principles studies. J Phys Chem C 120:16393–16398

    Article  CAS  Google Scholar 

  33. Kieslich G, Sun S, Cheetham AK (2014) Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci 5(12):4712–4715

    Article  CAS  Google Scholar 

  34. Ishihara T (2017) Springer handbook of electronic and photonic materials. Springer handbooks (Eds: S. Kasap, P. Capper), Springer, Cham

  35. Sopiha KV, Comparotto C, Márquez JA, Scragg JAJJ (2022) Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv Opt Mater 10(3):2101704

    Article  CAS  Google Scholar 

  36. Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM (1995) Conducting layered organic–inorganic halides containing oriented perovskite sheets. Science 267(1473):35

    Google Scholar 

  37. Mitzi DB, Chondroudis K, Kagan CR (2001) Organic-inorganic electronics. IBM J Res Dev 45(29):36

    Google Scholar 

  38. Topsöe H (1884) Krystallographisch-chemische untersuchungen homologer verbindungen. Z Krist 8:246

    Google Scholar 

  39. Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In Proc. 210th ECS Meeting (ECS)

  40. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050

    Article  CAS  Google Scholar 

  41. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(4088):4088

    Article  CAS  Google Scholar 

  42. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(591):1–7

    Google Scholar 

  43. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769

    Article  CAS  Google Scholar 

  44. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  CAS  Google Scholar 

  45. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398

    Article  CAS  Google Scholar 

  46. Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429

    Article  CAS  Google Scholar 

  47. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234

    Article  CAS  Google Scholar 

  48. Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Gratzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989

    Article  CAS  Google Scholar 

  49. Ahmad S, Abbas H, Khan MB, Nagal V, Hafiz AK, Khan ZH (2021) ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Sol Energy 216:164–170

    Article  CAS  Google Scholar 

  50. Zhao L, Kerner RA, Xiao Z, Hui Y, Lin L, Lee KM, Schwartz J, Rand BP (2016) Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett 1:595–602

    Article  CAS  Google Scholar 

  51. Khan ZH, Khan SA, Agel FA, Salah NA, Husain MM (2016) Chalcogenides to nanochalcogenides; exploring possibilities for future R&D. In: Husain M, Khan Z (eds) Advances in nanomaterials. Adv Struct Mater 79

  52. McGehee MD (2013) Fast-track solar cells. Nature 501(7467):323–325

    Article  CAS  Google Scholar 

  53. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842

    Article  CAS  Google Scholar 

  54. Hahn H, Mutschke U, Anorg Z (1957) Allg Chem 288:269–278

    Article  Google Scholar 

  55. Clearfield A (1963) Acta Crystallogr 16:135–142

    Article  CAS  Google Scholar 

  56. Tiwari D, Hutter OS, Longo G (2021) Chalcogenide perovskites for photovoltaics: current status and prospects. J Phys: Energy 3(3):034010

    CAS  Google Scholar 

  57. Edelstein AS, Cammarata RC (1998) Nanomaterials: synthesis, properties and applications. CRC Press.

  58. Clearfield A (1963) The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr 16:135–142

    Article  CAS  Google Scholar 

  59. Wang Y, Sato N, Fujino T (2001) Synthesis of BaZrS3 by short time reaction at lower temperatures. J Alloy Compd 327(1–2):104–112

    Article  CAS  Google Scholar 

  60. Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xiaohong Xu, Watson DF, Weinstein B, Sun YY, Zhang S, Zeng H (2016) Chalcogenide perovskites – an emerging class of ionic semiconductors. Nano Energy 22:129–135

    Article  CAS  Google Scholar 

  61. Wang Y, Sato N, Yamada K, Fujino T (2000) Synthesis of BaZrS3 in the presence of excess sulfur. J Alloys Compd 311(2):214–223

    Article  CAS  Google Scholar 

  62. Meng W, Saparov B, Hong F, Wang J, Mitzi DB, Yan Y (2016) Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater 28:821–829

    Article  CAS  Google Scholar 

  63. Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh DJ, Kapadia R, Jayakanth R (2017) Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv Mater 29(9):1604733

    Article  Google Scholar 

  64. Nitta T, Hayakawa K, Hayakawa S (1970) Formation, microstructure, and properties of barium zirconium sulfide ceramics. J Am Ceram Soc 53:601–604

    Article  CAS  Google Scholar 

  65. Lee CS, Kleinke KM, Kleinke H (2005) Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci 7:1049–1054

    Article  CAS  Google Scholar 

  66. Hanzawa K, Iimura S, Hiramatsu H, Hosono H (2019) Material design of green-light-emitting semiconductors: perovskite-type sulfide SrHfS3. J Am Chem Soc 141:5343–5349

    Article  CAS  Google Scholar 

  67. Ravi VK, Yu SH, Rajput PK, Nayak C, Bhattacharyya D, Chung DS, Nag A (2021) Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 13(3):1616–1623

    Article  CAS  Google Scholar 

  68. Swarnkar A, Mir WJ, Chakraborty R, Jagadeeswararao M, Sheikh T, Nag A (2019) Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem Mater 31(3):565–575

    Article  CAS  Google Scholar 

  69. Lelieveld R, Ijdo DJW (1980) Sulphides with the GdFeO3 structure. Acta Cryst B 36:2223–2226

    Article  Google Scholar 

  70. Sun YY, Agiorgousis ML, Zhang P, Zhang S (2015) Chalcogenide perovskites for photovoltaics. Nano Lett 15(1):581–585

    Article  CAS  Google Scholar 

  71. Wei X, Hui H, Zhao C, Deng C, Han M, Yu Z, Sheng A, Roy P, Chen A, Lin J, Watson DF (2020) Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 68:104317. https://doi.org/10.1016/j.nanoen.2019.104317

    Article  CAS  Google Scholar 

  72. Wei X, Hui H, Perera S, Sheng A, Watson DF, Sun YY, Jia Q, Zhang S, Zeng H (2020) Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega 5:18579–18583

    Article  CAS  Google Scholar 

  73. Pandey J, Ghoshal D, Dey D, Gupta T, Taraphder A, Koratkar N, Soni A. Ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin film. arXiv preprint arXiv:2004.13678

  74. Comparotto C, Davydova A, Ericson T, Riekehr L, Moro MV, Kubart T, Scragg J (2020) Chalcogenide perovskite BaZrS3: thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater 3:2762–2770

    Article  CAS  Google Scholar 

  75. Buffiere M, Dhawale DS, El-Mellouhi F (2019) Chalcogenide materials and derivatives for photovoltaic applications. Energ Technol 7(11):1900819

    Article  CAS  Google Scholar 

  76. Nishigaki Y, Nagai T, Nishiwaki M, Aizawa T, Kozawa M, Hanzawa K, Kato Y, Sai H, Hiramatsu H, Hosono H, Fujiwara H (2020) Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol RRL 4(5):1900555

    Article  CAS  Google Scholar 

  77. Huo Z, Wei SH, Yin WJ (2018) High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics. J Phys D Appl Phys 51(2018):474003

    Article  CAS  Google Scholar 

  78. Kuhar K, Crovetto A, Pandey M, Thygesen KS, Jacobsen KW (2017) Energy Environ Sci 10:2579

    Article  CAS  Google Scholar 

  79. Yamaoka S, Okai B (1970) Preparations of BaSnS3, SrSnS3 and PbSnS3 at high pressure. Mater Res Bull 5(10):789–794

    Article  CAS  Google Scholar 

  80. Bennett JW, Grinberg I, Rappe AM (2009) Phys Rev B: Condens Matter Mater Phys 79:1

    Google Scholar 

  81. Ju MG, Dai J, Ma L, Zeng XC (2017) Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv Energy Mater 7(18):1700216

    Article  CAS  Google Scholar 

  82. Aslanov LA (1969) Russ J Inorg Chem 57:1682

    Article  CAS  Google Scholar 

  83. Tranchitella LJ, Chen BH, Fettinger JC, Eichhorn BW (1997) Structural evolutions in the Sr1−xBaxZrSe3 series. J Solid State Chem 130:20–27

    Article  CAS  Google Scholar 

  84. Tranchitella LJ, Fettinger JC, Dorhout PK, Van Calcar PM, Eichhorn BW (1998) Commensurate columnar composite compounds: synthesis and structure of Ba15Zr14Se42 and Sr21Ti19Se57. J Am Chem Soc 120:7639–7640

    Article  CAS  Google Scholar 

  85. Moroz NA, Bauer C, Williams L, Olvera A, Casamento J, Page AA, Bailey TP, Weiland A, Stoyko SS, Kioupakis E, Uher C, Aitken JA, Poudeu PFP (2018) Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1−xSbxHfSe3 orthorhombic perovskite. Inorg Chem 57:7402–7411

    Article  CAS  Google Scholar 

  86. Dilena E, Dorfs D, George C, Miszta K, Povia M, Genovese A, Casu A, Prato M, Manna L (2012) Colloidal Cu2−x(SySe1−y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. J Mater Chem 22(26):13023–13031

    Article  CAS  Google Scholar 

  87. Dutta SK, Bera S, Pradhan N (2021) Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies. Chem Mater 33(11):3868–3877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. One of the authors (Mohd. Bilal Khan) is thankful to CSIR, Govt. of India for providing research support in the form of Research Associateship (File No. 09/0466(11082)/2021-EMR-I).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhail, M., Abbas, H., Khan, M.B. et al. Chalcogenide perovskites for photovoltaic applications: a review. J Nanopart Res 24, 142 (2022). https://doi.org/10.1007/s11051-022-05525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05525-0

Keywords

Navigation