Skip to main content
Log in

First principle study on the structures and properties of Agm(Ag2S)6 (m = 3–12) clusters

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Genetic algorithm (GA) combined density functional theory (DFT) method is used to obtain the structures of Agm(Ag2S)6 (m = 3–12) clusters. The size of the studied clusters is less than 2 nm. The computational results reveal that the six S atoms in Agm(Ag2S)6 (m = 3–12) clusters exist in S–Ag-S units, and the S–Ag-S units further form Ag3S3 or Ag4S4 units. The S atoms all bind with three or four Ag atoms to form μ3 or μ4-S. Other Ag atoms not in S–Ag-S units tend to form Ag3, Ag4, Ag5 or Ag6 cores to stabilize the structure. The evolution of the global minimum (GM) structures manifests that as the addition of Ag atom to Agm(Ag2S)6 cluster one by one, the number of Agn cores increases and the molecular framework unit changes from Ag3S3 to Ag4S4. When m ≤ 10, the silver cores gather at one side of the cluster and are wrapped by the cage molecular framework formed by Ag3S3 and Ag4S4 from one side. When m is bigger than 10, the molecular framework is not big enough to wrap the silver cores. Then, the silver cores are separated on the left and right sides of the molecular framework. The stability and ionization potentials of the clusters present odd–even oscillation, because the number of valence electrons is odd or even. Ag8(Ag2S)6 and Ag10(Ag2S)6 clusters are more stable than other clusters because of their high second-order difference energies. Ag7(Ag2S)6 and Ag11(Ag2S)6 clusters are easy to get electrons to form anionic clusters, resulting in big electron affinities. The sulfur atoms in the clusters obtain electrons to become negatively charged, whereas silver atoms loose valence electrons to become positively or negatively charged. The direction of electron transfer in the clusters is from silver to sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awwad AM, Salem NM, Aqarbeh MM, Abdulaziz FM (2020) Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem Int 6:42–48

    CAS  Google Scholar 

  • Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6.1 GaussView, Version 61, Semichem Inc, Shawnee Mission, KS, 2016

  • Díez-Buitrago B, Barroso J, Saa L, Briz N, Pavlov V (2019) Facile synthesis and characterization of Ag/Ag2S nanoparticles enzymatically grown in situ and their application to the colorimetric detection of glucose oxidase. Chemistry Select 4:8212–8219

    Google Scholar 

  • Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  • Feng Y, Cheng L (2015) Structural evolution of (Au2S)n (n = 1–8) clusters from first principles global optimization. RSC Adv 5:62543–62550

    Article  CAS  Google Scholar 

  • Frisch GTM, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H et al (2016) Gaussian 16, Revision avx. Gaussian Inc, Wallingford, CT

    Google Scholar 

  • Goo ZL, Minami K, Yoshinari N, Konno T (2021) Heterometallation of photoluminescent silver (I) sulfide nanoclusters protected by octahedral iridium (III) thiolates. Chem-Asian J 16:2641–2647

    Article  CAS  Google Scholar 

  • Han LL, Kuang XY, Ding LP, Shao P, Jin YY, Li HH (2014) Probing the geometries, relative stabilities, and electronic properties of neutral and anionic AgnSm (n + m ≤ 7) clusters. J Mol Model 20:1–10

    Article  CAS  Google Scholar 

  • Harris KD, Johnston RL, Kariuki BM (1998) The genetic algorithm: foundations and apllications in structure solution from powder diffraction data. Acta Crystallogr A 54:632–645

    Article  Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  • He D, Garg S, Wang Z, Li L, Rong H, Ma X, Li G, An T, Waite TD (2019) Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. Environ SCI-Nano 6:1674–1687

    Article  CAS  Google Scholar 

  • He WM, Zhou Z, Han Z, Li S, Zhou Z, Ma LF, Zang SQ (2021) Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew Chem Int Ed 60:8505–8509

    Article  CAS  Google Scholar 

  • Huang JH, Wang ZY, Zang SQ, Mak TC (2020) Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Central Sci 6:1971–1976

    Article  CAS  Google Scholar 

  • Johnston RL (2003) Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton T 22:4193–4207

    Article  Google Scholar 

  • Kluska K, Peris-Díaz MD, Płonka D, Moysa A, Dadlez M, Deniaud A, Bal W, Krężel A (2020) Formation of highly stable multinuclear AgnSn clusters in zinc fingers disrupts their structure and function. Chem Commun 56:1329–1332

    Article  CAS  Google Scholar 

  • Kuznetsova YV, Rempel SV, Popov ID, Gerasimov EY, Rempel AA (2017) Stabilization of Ag2S nanoparticles in aqueous solution by MPS. Colloid Surface A 520:369–377

    Article  CAS  Google Scholar 

  • Lasmi M, Mahtout S, Rabilloud F (2021) Growth behavior and electronic and optical properties of IrGen (n = 1–20) clusters. J Nanopart Res 23:26

    Article  CAS  Google Scholar 

  • León-Velázquez MS, Irizarry R, Castro-Rosario ME (2010) Nucleation and growth of silver sulfide nanoparticles. J Phys Chem C 114:5839–5849

    Article  Google Scholar 

  • Leung BO, Jalilehvand F, Mah V, Parvez M, Wu Q (2013) Silver (I) complex formation with cysteine, penicillamine, and glutathione. Inorg Chem 52:4593–4602

    Article  CAS  Google Scholar 

  • Li G, Lei Z, Wang QM (2010) Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J Am Chem Soc 132:17678–17679

    Article  CAS  Google Scholar 

  • Li YF, Li Y, Li Y, Tan JJ, Li HL (2016) Structural and electronic properties of small silver-sulfur clusters: a density functional study. Physica B 499:29–37

    Article  CAS  Google Scholar 

  • Liu C, Li T, Abroshan H, Li Z, Zhang C, Kim HJ, Li G, Jin R (2018) Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat Commun 9:1–6

    Google Scholar 

  • Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  • McLean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  • Motte L, Urban J (2005) Silver clusters on silver sulfide nanocrystals: synthesis and behavior after electron beam irradiation. J Phys Chem B 109:21499–21501

    Article  CAS  Google Scholar 

  • Nan ZA, Xiao Y, Liu XY, Wang T, Cheng XL, Yang Y, Lei Z, Wang QM (2019) Monitoring the growth of Ag-S clusters through crystallization of intermediate clusters. Chem Commun 55:6771–6774

    Article  CAS  Google Scholar 

  • Ni B, Kramer JR, Werstiuk NH (2003) An ab initio and AIM study on the molecular structure and stability of small CuxSy- Clusters. J Phys Chem A 107:8949–8954

    Article  CAS  Google Scholar 

  • Pedicini AF, Reber AC, Khanna SN (2013) The effect of sulfur covalent bonding on the electronic shells of silver clusters. J Chem Phys 139:164317

    Article  Google Scholar 

  • Pei Y, Shao N, Li H, Jiang DE, Zeng XC (2011) Hollow polyhedral structures in small gold-sulfide clusters. ACS Nano 5:1441–1449

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Sadovnikov SI, Gusev AI (2016) Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure. J Nanopart Res 18:277

    Article  Google Scholar 

  • Shen YL, Zhao P, Jin JL, Han J, Liu C, Liu Z, Ehara M, Xie YP, Lu X (2021) A comparative study of [Ag11(iPrS)9(dppb)3]2+ and [Ag15S(SBuS)12(dppb)3]+: templating effect on structure and photoluminescence. Dalton T 50:10561–10566

    Article  CAS  Google Scholar 

  • Song C, Tian Z (2019) Systematic study on the structures and properties of (Ag2S)n (n = 1–8) clusters. J Mol Model 25:1–12

    Article  Google Scholar 

  • Tan YL, Yang L, Yu TC, Yu H, Wang XY, Song YL, Niu Z, Lang JP (2021) Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Sci China Chem 64:948–952

    Article  CAS  Google Scholar 

  • Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  • Tian Z, Song C (2020) Theoretical study on the structures and growth mechanisms of Ag-rich clusters: Ag(Ag2S)n and Ag2(Ag2S)n (n = 1–6). J Struct Chem 61:1541–1550

    Article  CAS  Google Scholar 

  • Tian Z, Song C, Wang C, Xu H, Guan Q (2020) Structures and properties of [Ag(Ag2S)n]+ clusters with n = 1–9: a density functional theory study. J Nanopart Res 22:1–19

    Article  Google Scholar 

  • Wang P, Yang T, Zhao R, Zhang M (2016) Sulfur antisite-induced intrinsic high-temperature ferromagnetism in Ag2S: Y nanocrystals. Phys Chem Chem Phys 18:10123–10128

    Article  CAS  Google Scholar 

  • Wang Z, Li MD, Shi JY, Su HF, Liu JW, Feng L, Gao ZY, Xue QW, Tung CH, Sun D (2021) In situ capture of a ternary supramolecular cluster in a 58-nuclei silver supertetrahedron. CCS Chem 1873–1880

  • Wu Z, De J, Lanni E, Bier ME, Jin R (2010) Sequential observation of AgnS4 (1 ≤ n ≤ 7) gas phase clusters in MS/MS and prediction of their structures. J Phys Chem Lett 1:1423–1427

    Article  CAS  Google Scholar 

  • Wu WH, Zeng HM, Yu ZN, Wang C, Jiang ZG, Zhan CH (2021) Unusual structural transformation and luminescence response of magic-size silver(i) chalcogenide clusters via ligand-exchange. Chem Commun 57:13337–13340

    Article  CAS  Google Scholar 

  • Xu H, Niu X, Liu Z, Sun M, Tian Z, Wu X, Huang B, Tang Y, Yan CH (2021) Highly controllable hierarchically porous Ag/Ag2S heterostructure by cation exchange for efficient hydrogen evolution. Small 17:2103064

    Article  CAS  Google Scholar 

  • Yonesato K, Ito H, Yokogawa D, Yamaguchi K, Suzuki K (2020) An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew Chem Int Ed 59:16361–16365

    Article  CAS  Google Scholar 

  • Zhang J, Lu T (2021) Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 23:20323–20328

    Article  CAS  Google Scholar 

  • Zhao RN, Chen R, Han JG (2021) Geometrical and electronic properties of selfassembled inner hollow structured (Cu3S3)n nanomaterials. J Alloy Compd 862:158536

    Article  CAS  Google Scholar 

  • Zhou M, Bao Y, Jin S, Wen S, Chen S, Zhu M (2021) [Ag71(S-tBu)31(Dppm)](SbF6)2: an intermediate-sized metalloid silver nanocluster containing a building block of Ag64. Chem Commun 57:10383–10386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the teaching research project of Fuyang Normal University (2020JYXM45) and research start-up fund for Dr. Zhimei Tian (2018kyqd0022). We acknowledge the theoretical and computational chemistry LAB in school of chemistry and materials engineering of Fuyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongfu Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Song, C. & Wang, C. First principle study on the structures and properties of Agm(Ag2S)6 (m = 3–12) clusters. J Nanopart Res 24, 104 (2022). https://doi.org/10.1007/s11051-022-05491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05491-7

Keywords

Navigation