Skip to main content
Log in

Circular dichroism of one-dimensional chain of Au-Fe alloy nanoparticles for refractive index sensing applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we, theoretically, study the optical activity of a linear chain of 40 nm sized in diameter alloy spherical nanoparticles in the presence of a static external magnetic field illuminated by the electromagnetic field of left/right circular polarization in different angles of incidence. Regarding the subwavelength particle size, the coupled dipole method is employed to study the absorption cross section and magnetic circular dichroism (MCD) of the one-dimensional chain. The circular dichroism spectrum reveals that by increasing the Fe percentage in the alloy NPs, the peak intensity of the MCD signal decreases, and the spectrum broadens on the contrary. The refractive index sensitivity of MCD signals is investigated, either. It is shown that MCD signals are more sensitive than plasmonic signals to the refractive index variation. It is shown that the increment in the Fe atomic percentage results in more sensitive signals, as well. As an estimate, the calculations show more than 50% enhancement in the sensitivity of MCD signals of alloy \({Au}_{{0.85}}{Fe}_{{0.15}}\) in comparison to plasmonic signals of gold NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  • Albaladejo S, Gómez-Medina R, Froufe-Pérez LS, Marinchio H, Carminati R, Torrado JF, Armelles G, García-Martín A, Sáenz JJ (2010) Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle. Opt Express 18(4):3556–3567

    Article  CAS  Google Scholar 

  • Alexander DTL, Forrer D, Rossi E, Lidorikis E, Agnoli S, Bernasconi GD, Butet J, Martin OJF, Amendola V (2019) Electronic structure-dependent surface plasmon resonance in single Au-Fe nanoalloys. Nano Letters 19(8):5754–5761

    Article  CAS  Google Scholar 

  • Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from amb-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8):6279–6296

    Article  CAS  Google Scholar 

  • Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, Nicolato E, Marzola P, Fracasso G, Anselmi C et al (2014) Magneto-plasmonic au-fe alloy nanoparticles designed for multimodal sers-mri-ct imaging. Small 10(12):2476–2486

    Article  CAS  Google Scholar 

  • Amendola V, Scaramuzza S, Agnoli S, Polizzi S, Meneghetti M (2014) Strong dependence of surface plasmon resonance and surface enhanced raman scattering on the composition of au-fe nanoalloys. Nanoscale 6(3):1423–1433

    Article  CAS  Google Scholar 

  • Amendola V, Saija R, Maragò OM, Iatì MA (2015) Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale 7(19):8782–8792

    Article  CAS  Google Scholar 

  • Arava H, Derlet PM, Vijayakumar J, Cui J, Bingham NS, Kleibert A, Heyderman LJ (2018) Computational logic with square rings of nanomagnets. Nanotechnology 29(26):265205

    Article  CAS  Google Scholar 

  • Bansal A, Verma S (2014) Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays. Aip Advances 4(5):057104

    Article  CAS  Google Scholar 

  • Bhatia P, Verma S, Sinha M (2020) Tunable plasmonic properties of elongated bimetallic alloys nanoparticles towards deep uv-nir absorbance and sensing. J Quant Spectrosc Radiative Tran 241:106751

    Article  CAS  Google Scholar 

  • Bhatia P, Verma S, Sinha M (2020) Magneto-plasmonic co@ m (m= au/ag/au-ag) core-shell nanoparticles for biological imaging and therapeutics. J Quant Spectrosc Radiative Tran 251:107095

    Article  CAS  Google Scholar 

  • Bogani L, Cavigli L, de Julián Fernández C, Mazzoldi P, Mattei G, Gurioli M, Dressel M, Gatteschi D (2010) Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles. Adv Mater 22(36):4054–4058

    Article  CAS  Google Scholar 

  • Bulheller BM, Rodger A, Hirst JD (2007) Circular and linear dichroism of proteins. Phys Chem Chem Phys 9(17):2020–2035

    Article  CAS  Google Scholar 

  • Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Sci Appl 3(1):122

    Article  CAS  Google Scholar 

  • Chaumet P, Nieto-Vesperinas M (2000) Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate. Phys Rev B 61(20):14–11914127

    Article  Google Scholar 

  • Chen L, Su B, Jiang L (2019) Recent advances in one-dimensional assembly of nanoparticles. Chem Soc Rev 48(1):8–21

    Article  CAS  Google Scholar 

  • Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111(6):3713–3735

    Article  CAS  Google Scholar 

  • Craig F, Bohren DRH (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New York

    Google Scholar 

  • Deepa K, Lekha P, Sindhu S (2012) Efficiency enhancement in dssc using metal nanoparticles: A size dependent study. Sol Energy 86(1):326–330

    Article  CAS  Google Scholar 

  • Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66

    Article  CAS  Google Scholar 

  • Fan Z, Govorov AO (2011) Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism. J Phys Chem C 115(27):13254–13261

    Article  CAS  Google Scholar 

  • Fan Z, Zhang H, Govorov AO (2013) Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J Phys Chem C 117(28):14770–14777

    Article  CAS  Google Scholar 

  • Fung KH, Chan C (2008) Analytical study of the plasmonic modes of a metal nanoparticle circular array. Phys Rev B 77(20):205423

    Article  CAS  Google Scholar 

  • Gargiulo J, Cerrota S, Cortés E, Violi IL, Stefani FD (2016) Connecting metallic nanoparticles by optical printing. Nano Lett 16(2):1224–1229

    Article  CAS  Google Scholar 

  • Govorov AO, Gun’ko YK, Slocik JM, Gérard VA, Fan Z, Naik RR (2011) Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem 21(42):16806–16818

    Article  CAS  Google Scholar 

  • He Y, Lawrence K, Ingram W, Zhao Y (2016) Circular dichroism based refractive index sensing using chiral metamaterials. Chem Commun 52(10):2047–2050

    Article  CAS  Google Scholar 

  • Hopkins B, Poddubny AN, Miroshnichenko AE, Kivshar YS (2016) Circular dichroism induced by fano resonances in planar chiral oligomers. Laser Photonics Rev 10(1):137–146

    Article  CAS  Google Scholar 

  • Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12):9903–9924

    Article  Google Scholar 

  • Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4–6):153–164

    Article  CAS  Google Scholar 

  • La Spada L, Vegni L (2018) Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 11(4):603

    Article  CAS  Google Scholar 

  • Lal S, Link S, Halas NJ (2010) Nano-optics from sensing to waveguiding. Nanoscience And Technology: Collect Rev Nat J, 213–220

  • Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225

    Article  CAS  Google Scholar 

  • Liang Y, Liu P, Yang G (2014) Fabrication of one-dimensional chain of iron-based bimetallic alloying nanoparticles with unique magnetizations. Cryst Growth Des 14(11):5847–5855

    Article  CAS  Google Scholar 

  • Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134(38):15607–15620

    Article  CAS  Google Scholar 

  • Ma H, Liu X, Gao C, Yin Y (2020) The calculated dielectric function and optical properties of bimetallic alloy nanoparticles. J Phys Chem C 124(4):2721–2727

    Article  CAS  Google Scholar 

  • Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326

    Article  CAS  Google Scholar 

  • Madadi E, Khalilizadeh A, Nasiri M (2019) Tunable magneto-optical linear and circular dichroism spectra for a dimer of core-shell prolate spheroids. JOSA B 36(4):991–998

    Article  CAS  Google Scholar 

  • Manera MG, Colombelli A, Taurino A, Martin AG, Rella R (2018) Magneto-optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  • Mohammadzadeh A, Miri M (2016) Magnetic linear and circular dichroism of planar sets of hollow silver nanoparticles: engineering the spectra by hollow size. JOSA B 33(4):711–719

    Article  CAS  Google Scholar 

  • Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18(21):2415–2419

    Article  CAS  Google Scholar 

  • Nishijima Y, Akiyama S (2012) Unusual optical properties of the au/ag alloy at the matching mole fraction. Opt Mater Express 2(9):1226–1235

    Article  CAS  Google Scholar 

  • Pakdel S, Miri M (2012) Faraday rotation and circular dichroism spectra of gold and silver nanoparticle aggregates. Phys Rev B 86(23):235445

    Article  CAS  Google Scholar 

  • Pannu C, Bala M, Khan S, Srivastava S, Kabiraj D, Avasthi D (2015) Synthesis and characterization of Au-Fe alloy nanoparticles embedded in a silica matrix by atom beam sputtering. RSC Adv 5(112):92080–92088

    Article  CAS  Google Scholar 

  • Peña-Rodríguez O, Pal U (2011) Au@ ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3(9):3609–3612

    Article  CAS  Google Scholar 

  • Purcell E, Pennypacker C (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  • Rasskazov IL, Karpov SV, Markel VA (2014) Waveguiding properties of short linear chains of nonspherical metal nanoparticles. JOSA B 31(12):2981–2989

    Article  CAS  Google Scholar 

  • Rekola HT, Hakala TK, Törmä P (2018) One-dimensional plasmonic nanoparticle chain lasers. ACS Photonics 5(5):1822–1826

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J  Nanobiotechnology 2(1):1–6

    Article  Google Scholar 

  • Sardar R, Shumaker-Parry JS (2008) Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Nano Letters 8(2):731–736

    Article  CAS  Google Scholar 

  • Shimada T, Imura K, Okamoto H, Kitajima M (2013) Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy. Phys Chem Chem Phys 15(12):4265–4269

    Article  CAS  Google Scholar 

  • Song J, Zhou J, Duan H (2012) Self-assembled plasmonic vesicles of sers-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134(32):13458–13469

    Article  CAS  Google Scholar 

  • Su B, Wu Y, Tang Y, Chen Y, Cheng W, Jiang L (2013) Free-standing 1d assemblies of plasmonic nanoparticles. Adv Mater 25(29):3968–3972

    Article  CAS  Google Scholar 

  • Tang Z, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17(8):951–962

    Article  CAS  Google Scholar 

  • Thomas S, Nair SK, Jamal EMA, Al-Harthi S, Varma MR, Anantharaman M (2008) Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology 19(7):075710

    Article  CAS  Google Scholar 

  • Tomitaka A, Arami H, Ahmadivand A, Pala N, McGoron AJ, Takemura Y, Febo M, Nair M (2020) Magneto-plasmonic nanostars for image-guided and nir-triggered drug delivery. Sci Rep 10(1):1–10

    Article  CAS  Google Scholar 

  • Torresan V, Forrer D, Guadagnini A, Badocco D, Pastore P, Casarin M, Selloni A, Coral D, Ceolin M, Fernandez van Raap MB et al (2020) 4d multimodal nanomedicines made of nonequilibrium Au-Fe alloy nanoparticles. ACS Nano 14(10):12840–12853

    Article  CAS  Google Scholar 

  • Tserkezis C, Yesilyurt AM, Huang J-S, Mortensen NA (2018) Circular dichroism in nanoparticle helices as a template for assessing quantum-informed models in plasmonics. ACS Photonics 5(12):5017–5024

    Article  CAS  Google Scholar 

  • Ullah H, Qu Y, Wang T, Wang Y, Jing Z, Zhang Z (2019) Tunable chiroptical response of chiral system composed of a nanorod coupled with a nanosurface. Appl Surf Sci 467:684–690

    Article  CAS  Google Scholar 

  • Wang L, Zhu Y, Xu L, Chen W, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem 122(32):5604–5607

    Article  Google Scholar 

  • Wang M, Cao M, Guo Z, Gu N (2013) Two-step decomposition of plasmon coupling in plasmonic oligomers. J Phys Chem C 117(22):11713–11717

    Article  CAS  Google Scholar 

  • Wei Q-H, Su K-H, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional au nanoparticle chains. Nano Lett 4(6):1067–1071

    Article  CAS  Google Scholar 

  • Wu D, Liu X (2010) Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo. Appl Phys Lett 97(6):061904

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Mojtaba Nasiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilizadeh, A., Nasiri, M. & Madadi, E. Circular dichroism of one-dimensional chain of Au-Fe alloy nanoparticles for refractive index sensing applications. J Nanopart Res 24, 86 (2022). https://doi.org/10.1007/s11051-022-05450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05450-2

Keywords

Navigation