Skip to main content
Log in

Alterations on HeLa cell actin filaments induced by PEGylated gold nanorod-based plasmonic photothermal therapy

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The actin cytoskeleton plays a crucial role in dynamic processes such as cell adhesion and intracellular movement. For cancer cells, both mechanisms are involved in metastasis. Plasmonic photothermal therapy (PPT) is postulated to lessen undesirable damage of both the surrounding healthy cells and tissue. We have examined the actin filaments of HeLa cells treated in vitro with PEGylated gold nanorod (PEGGNR)-based PPT. Our results show that 5 min of PEGGNR-PPT induces irreversible damages on the cytoskeleton network, which initiate with the accumulation of F-actin stress fibers and evolve into cell shrinkage and apoptosis. The PPT mediated by PEGGNRs results in 60.5% of death cells by apoptosis, in which F-actin distribution is significantly accumulated in a reduced area (2.5 times higher than non-treated). Such results suggest that the PEGGNRs could be responsible for compromising the cytoskeleton integrity of HeLa cells while inducing apoptosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alabugin A (2019) Near-IR photochemistry for biology: exploiting the optical window of tissue. Photochem Photobiol 95(3):722–732

    Article  CAS  Google Scholar 

  • Aillon K et al (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466

    Article  CAS  Google Scholar 

  • Akiyama Y et al (2012) Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice. Nanoscale Res Lett 7(1):565

    Article  Google Scholar 

  • Ali MR et al (2017) Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci 114(28):E5655–E5663

    Article  CAS  Google Scholar 

  • Alkilany AM et al (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    Article  CAS  Google Scholar 

  • Bhardwaj AK et al (2018) Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their bactericidal efficacy: photon energy as key for size and distribution control. J Photochem Photobiol, B 188:42–49

    Article  CAS  Google Scholar 

  • Birukova AA, et al. (2009) Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine: Nanotechnology, Biology and Medicine, 2009. 5(1): 30–41

  • Baronzio GF, Hager ED (2008) Hyperthermia in cancer treatment: a primer. 2008: Springer Science & Business Media

  • Bhardwaj, A.K., et al. (2021) An overview of silver nano-particles as promising materials for water disinfection. Environ Technol Innovation 23: 101721

  • Cao J, et al. (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. 195: 332-351

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1(4):279–293

    Article  CAS  Google Scholar 

  • Cavaliere R et al (1967) Selective heat sensitivity of cancer cells. Biochemical and Clinical Studies Cancer 20(9):1351–1381

    CAS  Google Scholar 

  • Chen H, et al. (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. 2010. 6(20): 2272-2280

  • Coakley W (1987) Hyperthermia effects on the cytoskeleton and on cell morphology. in Symposia of the Society for Experimental Biology

  • Desouza M, Gunning PW, Stehn JR (2012) The actin cytoskeleton as a sensor and mediator of apoptosis. BioArchitecture 2(3):75–87

    Article  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  CAS  Google Scholar 

  • Eghtedari M et al (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9(1):287–291

    Article  CAS  Google Scholar 

  • Eira J et al (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61–82

    Article  CAS  Google Scholar 

  • El-Sayed MA, et al. (2013) Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in Ehrlich carcinoma solid tumor model. PLoS One 8(10): e76207

  • Falk M, Issels R (2001) Hyperthermia in oncology. Int J Hyperth 17(1):1–18

    Article  CAS  Google Scholar 

  • Hildebrandt B et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  Google Scholar 

  • Hsu S-W, On K, Tao ARJJotACS (2011) Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. 133(47): 19072–19075

  • Huang P et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809

    Article  CAS  Google Scholar 

  • Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine 47(1):1–9

    Article  CAS  Google Scholar 

  • Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  • Hurwitz M, Stauffer P (2014) Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. in Seminars in oncology. Elsevier

  • Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44(17):2546–2554

    Article  CAS  Google Scholar 

  • Jang B, Kim YS, Choi Y (2011) Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation. Small 7(2):265–270

    Article  CAS  Google Scholar 

  • Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2(9):916

    Article  CAS  Google Scholar 

  • Kaur P et al (2016) Hyperthermia using nanoparticles–promises and pitfalls. Int J Hyperthermia 32(1):76–88

    Article  CAS  Google Scholar 

  • Kelly KL, et al. (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications. 668–677

  • Kodiha M et al (2015) Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics 5(4):357

    Article  Google Scholar 

  • Kopwitthaya A, et al. (2010) Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications. Nanotechnology, 21(31): 315101

  • Lankveld DP et al (2011) Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine 6(2):339–349

    Article  CAS  Google Scholar 

  • Lee GY, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25(3):111–118

    Article  CAS  Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92(3):433–438

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  CAS  Google Scholar 

  • Liu H et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895

    Article  CAS  Google Scholar 

  • Liu K et al (2015) Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 31(17):4973–4980

    Article  CAS  Google Scholar 

  • Lupo DW, Quack M (1987) IR-laser photochemistry. Chem Rev 87(1):181–216

    Article  CAS  Google Scholar 

  • Mackey MA et al (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326

    Article  CAS  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  Google Scholar 

  • Martensson N, et al. (1980) Core-level binding energies of solid thallium. 19(3): 299-301

  • McKayed KK, Simpson JCJC (2013) Actin in action: imaging approaches to study cytoskeleton structure and function. 2(4): 715-731

  • Murphy CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  CAS  Google Scholar 

  • Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18(21):2415–2419

    Article  CAS  Google Scholar 

  • Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Radiation Oncol * Biology* Physics 16(3): 535–549

  • Petrova H, et al. (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. 8(7): 814-821

  • Plaetzer K et al (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 24(2):259–268

    Article  CAS  Google Scholar 

  • Pu Y, et al. (2018) Elucidating the growth mechanism of plasmonic gold nanostars with tunable optical and photothermal properties. 57(14): 8599-8607

  • Qin Z, et al. (2016) Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. 6(1): 1-13

  • Reisler E, Egelman EH (2007) Actin structure and function: what we still do not understand. J Biol Chem 282(50):36133–36137

    Article  CAS  Google Scholar 

  • Schulz F et al (2016) Effective PEGylation of gold nanorods. Nanoscale 8(13):7296–7308

    Article  CAS  Google Scholar 

  • Song CW (1984) Effect of local hyperthermia on blood flow and microenvironment: a review. Can Res 44(10 Supplement):4721s–4730s

    CAS  Google Scholar 

  • Spyratou E et al (2017) Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 9(12):173

    Article  Google Scholar 

  • Trendowski M (2014) Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846(2): 599–616

  • Ubah CO, Wallace HM (2014) Cancer therapy: targeting mitochondria and other sub-cellular organelles. Current pharmaceutical design, 20(2): 201–222

  • Vindin H, et al. (2014) Validation of an algorithm to quantify changes in actin cytoskeletal organization 19(3): 354-368

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66(6):2181–2189

    Article  CAS  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  • Wu Y et al (2018) Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano 12(9):9279–9290

    Article  CAS  Google Scholar 

  • Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  CAS  Google Scholar 

  • Xu W et al (2012) RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating α(v)β3 expression. Int J Nanomed 7:915–924

    CAS  Google Scholar 

  • Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1773(5): 642–652

  • Zou R, et al. (2010) Thermal stability of gold nanorods in an aqueous solution.372(1-3): 177-181

Download references

Funding

This work was supported by SEP–CONACyT Mexico, Ciencia Basica Grant No. 1901010 (A1-S-28227).

Author information

Authors and Affiliations

Authors

Contributions

The initial work was conducted in Prof. Lal’s laboratory at the UCSD when Prof Santacruz was a visiting faculty at the UCSD.

Corresponding author

Correspondence to Karla Santacruz-Gomez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santacruz-Gomez, K., Melendrez, R., Licerio-Ramírez, M. et al. Alterations on HeLa cell actin filaments induced by PEGylated gold nanorod-based plasmonic photothermal therapy. J Nanopart Res 24, 38 (2022). https://doi.org/10.1007/s11051-022-05425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05425-3

Keywords

Navigation