Skip to main content
Log in

Synthesis and characterization of nanosheet NiMoO4 powder as a highly efficient and reusable catalyst for environmental remediation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The simple and eco-friendly co-precipitation method is used to synthesize nickel molybdate in an aqueous solution at room temperature. The physical properties of NiMoO4 are investigated using several techniques, such as X-ray diffraction (XRD), which perfectly fits the crystalline α-form of NiMoO4. Moreover, scanning electron microscope (SEM) images show nanosheet-like particles. The atomic force microscopy (AFM) measurements reveal high roughness of the particle’s surface. Furthermore, the investigations into the main electronic levels of α-NiMoO4 suggest a strong UV–visible light absorption. The optical band gap is found to be about 2.36 eV. Then, the photocatalytic activity of the synthesized NiMoO4 nanoparticles (NPs) is tested against methylene blue (MB) dye as a pollutant model. The obtained results reveal good capacity of MB degradation even in the dark. It exhibits a degradation efficiency up to 87% within 60 min, under visible-light illumination, and 44% in the dark. The photocatalytic stability of NiMoO4 NPs is studied as well. So, successive photocatalytic cycles show that the photocatalyst is still efficient even after five cycles. The obtained results permit to optimistically consider α-NiMoO4 nanosheets as talented photocatalyst for environmental applications, such as photodegradation of hazardous pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  • Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW (2021) Environ Chem Lett 19:375

    CAS  Google Scholar 

  • Ahmad T, Phul R, Alam P, Lone IH, Shahazad M, Ahmed J, Ahamad T, Alshehri S (2017) RSC Adv 7:27549

    CAS  Google Scholar 

  • Ahmed J, Ubiadullah M, Khan MAM, Alhokbany N, Alshehri SM (2021) Mater Charact 171:110741

    CAS  Google Scholar 

  • Al-Sayyed G, D’Oliveira JC, Pichat P (1991) J Photochem Photobiol A 58:99

  • AlShehri S M, Jahangeer A, Alzahrani A M, Tansir A (2017) New J. Chem. 41 8178 https://pubs.rsc.org/en/content/articlehtml/2017/nj/c7nj02085f

  • AlShehri SM, Jahangeer A, Tansir A, Alhokbany N, Arunachalam P, Al-Mayouf AM, Tokeer A (2018) J Sol-Gel Sci Technol 87:137. https://doi.org/10.1007/s10971-018-4698-7

    Article  CAS  Google Scholar 

  • AlShehri SM, Jahangeer A, Tansir A, Almaswari BM, Aslam K (2017) J. Nanopart Res 19:289. https://doi.org/10.1007/s11051-017-3970-z

    Article  CAS  Google Scholar 

  • Amini M, Pourbadiei B, Ruberu TPA, Woo LK (2014) New J Chem 38:1250

    CAS  Google Scholar 

  • An L, Feng J, Zhang Y, Wang R, Liu H, Wang GC, Xi P (2018) Adv Funct Mater 29:1805298

    Google Scholar 

  • Azadmanjiri J, Kumar P, Srivastava VK, Sofer Z (2020) ACS Appl Nano Mater 3:3116

    CAS  Google Scholar 

  • Babu SG, Ramalingam V, Neppolian B, Dionysiou DD, Ashokkumar MJ (2015) Hazard Mater 291:83

    CAS  Google Scholar 

  • Baskar S, Meyrick D, Ramakrishnan KS, Minakshi M (2014) Chem Eng J 253:502

    CAS  Google Scholar 

  • Biswas SK, Dhak D, Pathak A, Pramanik P (2008) Mater Res Bull 43:665

    CAS  Google Scholar 

  • Brito JL, Barbosa AL (1997) J Catal 171:467

    CAS  Google Scholar 

  • Chen D, Wang Z, Ren T, Ding H, Yao W, Zong R, Zhu Y (2014) J Phys Chem C 118:15300

    CAS  Google Scholar 

  • Dey S, Ricciardo RA, Cuthbert HL, Woodward PM (2014) Inorg Chem 53:4394

    CAS  Google Scholar 

  • Dhanasekar M, Ratha S, Rout CS, Bhat SV (2017) J Environ Chem Eng 5:2997

    CAS  Google Scholar 

  • Dorenbos P, Krumpel AH, Van der Kolk E, Boutinaud P, Bettinelli M, Cavalli E (2010) Opt Mater 32:1681

    CAS  Google Scholar 

  • Dutta S, Pal S, De S (2019) New J Chem 43:12385

    CAS  Google Scholar 

  • Dutta PS, Khanna A (2012) ECS J Solid State Sci Technol 2:R3153

    Google Scholar 

  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) J Photochem Photobiol B- Biol 180:39

    Google Scholar 

  • Gassoumi B, Jaballah R, Boukhachem A, Kamoun-Turki N, Amlouk M (2021) Bull Mater Sci 44:128. https://doi.org/10.1007/s12034-021-02404-7

    Article  CAS  Google Scholar 

  • Ge L, Han C, Liu J (2011) Appl Catal B- Environ 108:100

    Google Scholar 

  • Ghoreishian SM, Badii K, Norouzi M, Rashidi A, Montazer M, Sadeghi M, Vafaee M (2014) J Taiwan Inst Chem Eng 45:2436

    CAS  Google Scholar 

  • Ghoreishian SM, Norouzi M, Badii K (2017) Desalination. Water Treat 58:298

    Google Scholar 

  • Ghoreishian SM, Raju GSR, Pavitra E, Kwak CH, Han YK, Huh YS (2019) Ceram Int 45:12041

    CAS  Google Scholar 

  • Gomathi Devi L, Kottam N, Girish Kumar S, Eraiah Rajashekhar K (2010) Open Chem 8:142. https://doi.org/10.2478/s11532-009-0115-y

    Article  CAS  Google Scholar 

  • Guo D, Zhang P, Zhang H, Yu X, Zhu J, Li Q, Wang T (2013) J Mater Chem a 1:9024

    CAS  Google Scholar 

  • Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y (2021) ACS Appl Mater Interfaces 13:8306

    CAS  Google Scholar 

  • He Y, Gao JF, Feng FQ, Liu C, Peng YZ, Wang SY (2012) Chem Eng J 179:8

    CAS  Google Scholar 

  • He X, Hong W, Jian C, Li J, Cai Q, Liu W (2019) Int J Hydro Energy 44:23066

    CAS  Google Scholar 

  • Herrmann J, Tahiri H, Aitichou Y, Lassaletta G, Gonzalezelipe A, Fernandez A (1997) Appl Catal b: Environ 13:219

    CAS  Google Scholar 

  • Herrmann JM, Pichat P (1980) J. Chem So. Faraday Trans 1 76:1138

    CAS  Google Scholar 

  • Hu Y, Li D, Sun F, Wang H, Weng Y, Xiong W, Shao Y (2015) RSC Adv 5:54882

    CAS  Google Scholar 

  • Hu K, Jeong S, Elumalai G, Kukunuri S, Fujita J, Ito Y (2020) ACS Appl Energy Mater 3:7535

    CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl. Catal B31:45

    Google Scholar 

  • Jahangeer A, Alhokbany N, Husain A, Tokeer A, Majeed Khan MA, Alshehri SM (2020) J SolGel Sci Technol 94:493. https://doi.org/10.1007/s10971-020-05274-3

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna SA (2012) Energy Environ Sci 8:8075

    Google Scholar 

  • Kim Y, Atherton SJ, Brigham ES, Mallouk TE (1993) J Phys Chem 97:11802

    CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Appl Catal b: Environ 49:1

    CAS  Google Scholar 

  • Kormann C, Bahnemann DW, Hoffmann MR (1988) J Phys Chem 92:5196

    CAS  Google Scholar 

  • Kumar RS, Dhakal D, Gyawali G, Joshi B, Raj Koirala A, Wohn Lee S (2019) Chem Eng J 373:259

    Google Scholar 

  • Kumar N, Kumar S, Gusain R, Manyala N, Eslava S, Ray S (2020) ACS Appl Energy Mater 3:9897

    CAS  Google Scholar 

  • Leyzerovich N, Bramnik K, Buhrmester T, Ehrenberg H, Fuess H (2004) J Power Sources 127:76

    CAS  Google Scholar 

  • Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) J Mater Chem a 1:1380

    CAS  Google Scholar 

  • Masteri-Farahani M, Mahdavi S, Rafizadeh M (2013) Ceram Int 39:4619

    CAS  Google Scholar 

  • Minero C, Maurino V and Vione D (2013) in P Pichat (ed) Photocatalytic mechanisms and reaction pathways drawn from kinetic and probe molecules (Wiley-VCH Verlag GmbH & Co. KGaA) https://doi.org/10.1002/9783527645404.ch3

  • Mocherla PSV, Karthik C, Ubic R, Rao MSR, Sudakar C (2013) Appl. Phys. Lett. 103:022910

    Google Scholar 

  • Mosleh M (2017) J Mater Sci-Mater El 28:6788

    CAS  Google Scholar 

  • Nguyen TL, Phung VD, Ayalew K, Chun D, Kim IT, Kim KJ, Moon JT (2021) Chem Eng J 415:128813

    CAS  Google Scholar 

  • Oliveira HS, Oliveira LCA, Pereira MC, Ardisson JD, Souza PP, Patricio PO, Moura FCC (2015) New J Chem 39:3051

    CAS  Google Scholar 

  • Panahi-Kalamuei M, Mousavi-Kamazani M, Salavati-Niasari M, Hosseinpour-Mashkani SM (2015) Ultrason Sonochem 23:246

    CAS  Google Scholar 

  • Peng S, Li L, Wu H, Madhavi S, Lou X (2014) Adv Ener Mater 5:1401172

    Google Scholar 

  • Peng S, Li L, Wu H, Madhavi S, Lou X (2015) Adv Energy Mater 5:1401172

    Google Scholar 

  • Pillay B, Mathebula MR, Friedrich HB (2009) App Catal A Gen 361:57

    CAS  Google Scholar 

  • Ray SK, Dhakal D, Regmi C, Yamaguchui T, Lee SW (2018b) J Photochem Photobiol A- Chem 350:59

    CAS  Google Scholar 

  • Ray S K, Hur J A (2021) J. Environ. Manage. 278 111562.

  • Ray SK, Dhakal D, Sohng JK, Kim SY, Lee SW (2018a) Chem Eng J 347:366

    CAS  Google Scholar 

  • Ray SK, Dhakal D, Pandey RP, Lee SW (2017) Mat Sci Eng c 78:1164

    CAS  Google Scholar 

  • Ray SK, Pandey RP, Jeong S, Lee SW (2018c) J Photochem Photobiol A- Chem 367:162

    CAS  Google Scholar 

  • Ray SK, Dhakal D, Hur J, Lee SW (2020) J. Hazard Mater. 385:121553

    CAS  Google Scholar 

  • Razgoniaeva N, Moroz P, Lambright S, Zamkov M (2015) J Phys Chem Lett 6:4352

    CAS  Google Scholar 

  • Sakthikumar K, Ede SR, Mishra S, Kundu S (2016) Dalton Trans 45:8897

    CAS  Google Scholar 

  • Senthilkumar B, Sankar KV, Selvan RK, Danielle M (2013) RSC Adv 3:352

    CAS  Google Scholar 

  • Sameera S, Rao PP, Divya S, Raj AKV (2015) ACS Sustainable Chem Eng 3:1227

    CAS  Google Scholar 

  • Sharma N, Shaju KM, Subba Rao GV, Chowdari BVR, Dong ZL (2004) Chem Mater 16:504

    CAS  Google Scholar 

  • Tennakone K, Ileperuma OA, Bandara JMS, Kiridena WCB (1992) Semicond Sci Technol 7:423

    CAS  Google Scholar 

  • Thilagavathi P, Manikandan A, Sujatha S, Jaganathan SK, Arul Antony S (2016) Nanosci Nanotechnol Lett 8:438

    Google Scholar 

  • Tong Y, Chen P, Zhang M, Zhou T, Zhang L, Chu W, Xie Y (2017) ACS Catal 8:1

    Google Scholar 

  • Tributsch H (1980) Electrochemistry at semiconductor and oxidized metal electrode. Von SR Morrison Plenum Press New York 94:85

    Google Scholar 

  • Umapathy V, Neeraja P, Manikandan A, Ramu P (2017) Trans Nonferrous Met Soc China 27:1785

    Google Scholar 

  • Vikraman D, Hussain S, Patil SA, Truong L, Arbab AA, Jeong SH, Chun SH, Jung J, Kim HS (2021) ACS Appl Mater Interfaces 13:5061

    CAS  Google Scholar 

  • Wang R, Li J, Jiang P, Gao W, Cong R, Yang T (2021) J Phys Chem Lett 12:1772

    CAS  Google Scholar 

  • Ward JW (1968) J Phys Chem 72:4211

    CAS  Google Scholar 

  • Watcharatharapong T, Minakshi Sundaram M, Chakraborty S, Li D, Shafiullah G, Aughterson RD, Ahuja R (2017) ACS Appl Mater Inter 9:17977

    CAS  Google Scholar 

  • Wendlandt W M and Hecht H G (1966) (Eds) Reflectance and spectroscopy, Interscience publishers-J Wiley and Sons, Inc., New york 298.

  • Wenzel RN (1936) Ind Eng Chem 28:988

    CAS  Google Scholar 

  • Williamson GK, Smallman RE (1956) Philos Mag 1:34

    CAS  Google Scholar 

  • Yang L, Wang J, Wan Y, Li Y, Xie H, Cheng H, Seo HJ (2016) J Alloys Comp 664:756

    CAS  Google Scholar 

  • Yao M, Hu Z, Liu Y, Liu P (2016) Ionics 22:701

    CAS  Google Scholar 

  • Yoon Y, Nelson J (1984) Am Ind Hyg Assoc J 45:509

    CAS  Google Scholar 

  • Yu J, Yu JC, Ho W, Jiang Z (2002) New J Chem 26:607

    CAS  Google Scholar 

  • Zhang Z, Li W, Ng TW, Kang W, Lee CS, Zhang W (2015) J Mater Chem a 3:20527

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Campus France and the Tunisian Ministry of Higher Education and scientific Research for financial support within program (PHC Utique project No 17G1143). We acknowledge the Institute of D’Alembert (IDA), Dr. Rasta GHASEMI, for the assistance with SEM-EDS analysis. We thank Prof. Kamel Khirouni from Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l’Environnement, Faculté des Sciences de Gabes, Tunisia, for the assistance in reflectance measurements.

Funding

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique(TN), Campus France, PHC Utique project No 17G1143, Thamer Aloui

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Guermazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloui, T., Guermazi, H., Fourati, N. et al. Synthesis and characterization of nanosheet NiMoO4 powder as a highly efficient and reusable catalyst for environmental remediation. J Nanopart Res 24, 35 (2022). https://doi.org/10.1007/s11051-022-05417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05417-3

Keywords

Navigation