Abstract
The simple and eco-friendly co-precipitation method is used to synthesize nickel molybdate in an aqueous solution at room temperature. The physical properties of NiMoO4 are investigated using several techniques, such as X-ray diffraction (XRD), which perfectly fits the crystalline α-form of NiMoO4. Moreover, scanning electron microscope (SEM) images show nanosheet-like particles. The atomic force microscopy (AFM) measurements reveal high roughness of the particle’s surface. Furthermore, the investigations into the main electronic levels of α-NiMoO4 suggest a strong UV–visible light absorption. The optical band gap is found to be about 2.36 eV. Then, the photocatalytic activity of the synthesized NiMoO4 nanoparticles (NPs) is tested against methylene blue (MB) dye as a pollutant model. The obtained results reveal good capacity of MB degradation even in the dark. It exhibits a degradation efficiency up to 87% within 60 min, under visible-light illumination, and 44% in the dark. The photocatalytic stability of NiMoO4 NPs is studied as well. So, successive photocatalytic cycles show that the photocatalyst is still efficient even after five cycles. The obtained results permit to optimistically consider α-NiMoO4 nanosheets as talented photocatalyst for environmental applications, such as photodegradation of hazardous pollutants.
Similar content being viewed by others
References
Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW (2021) Environ Chem Lett 19:375
Ahmad T, Phul R, Alam P, Lone IH, Shahazad M, Ahmed J, Ahamad T, Alshehri S (2017) RSC Adv 7:27549
Ahmed J, Ubiadullah M, Khan MAM, Alhokbany N, Alshehri SM (2021) Mater Charact 171:110741
Al-Sayyed G, D’Oliveira JC, Pichat P (1991) J Photochem Photobiol A 58:99
AlShehri S M, Jahangeer A, Alzahrani A M, Tansir A (2017) New J. Chem. 41 8178 https://pubs.rsc.org/en/content/articlehtml/2017/nj/c7nj02085f
AlShehri SM, Jahangeer A, Tansir A, Alhokbany N, Arunachalam P, Al-Mayouf AM, Tokeer A (2018) J Sol-Gel Sci Technol 87:137. https://doi.org/10.1007/s10971-018-4698-7
AlShehri SM, Jahangeer A, Tansir A, Almaswari BM, Aslam K (2017) J. Nanopart Res 19:289. https://doi.org/10.1007/s11051-017-3970-z
Amini M, Pourbadiei B, Ruberu TPA, Woo LK (2014) New J Chem 38:1250
An L, Feng J, Zhang Y, Wang R, Liu H, Wang GC, Xi P (2018) Adv Funct Mater 29:1805298
Azadmanjiri J, Kumar P, Srivastava VK, Sofer Z (2020) ACS Appl Nano Mater 3:3116
Babu SG, Ramalingam V, Neppolian B, Dionysiou DD, Ashokkumar MJ (2015) Hazard Mater 291:83
Baskar S, Meyrick D, Ramakrishnan KS, Minakshi M (2014) Chem Eng J 253:502
Biswas SK, Dhak D, Pathak A, Pramanik P (2008) Mater Res Bull 43:665
Brito JL, Barbosa AL (1997) J Catal 171:467
Chen D, Wang Z, Ren T, Ding H, Yao W, Zong R, Zhu Y (2014) J Phys Chem C 118:15300
Dey S, Ricciardo RA, Cuthbert HL, Woodward PM (2014) Inorg Chem 53:4394
Dhanasekar M, Ratha S, Rout CS, Bhat SV (2017) J Environ Chem Eng 5:2997
Dorenbos P, Krumpel AH, Van der Kolk E, Boutinaud P, Bettinelli M, Cavalli E (2010) Opt Mater 32:1681
Dutta S, Pal S, De S (2019) New J Chem 43:12385
Dutta PS, Khanna A (2012) ECS J Solid State Sci Technol 2:R3153
Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) J Photochem Photobiol B- Biol 180:39
Gassoumi B, Jaballah R, Boukhachem A, Kamoun-Turki N, Amlouk M (2021) Bull Mater Sci 44:128. https://doi.org/10.1007/s12034-021-02404-7
Ge L, Han C, Liu J (2011) Appl Catal B- Environ 108:100
Ghoreishian SM, Badii K, Norouzi M, Rashidi A, Montazer M, Sadeghi M, Vafaee M (2014) J Taiwan Inst Chem Eng 45:2436
Ghoreishian SM, Norouzi M, Badii K (2017) Desalination. Water Treat 58:298
Ghoreishian SM, Raju GSR, Pavitra E, Kwak CH, Han YK, Huh YS (2019) Ceram Int 45:12041
Gomathi Devi L, Kottam N, Girish Kumar S, Eraiah Rajashekhar K (2010) Open Chem 8:142. https://doi.org/10.2478/s11532-009-0115-y
Guo D, Zhang P, Zhang H, Yu X, Zhu J, Li Q, Wang T (2013) J Mater Chem a 1:9024
Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y (2021) ACS Appl Mater Interfaces 13:8306
He Y, Gao JF, Feng FQ, Liu C, Peng YZ, Wang SY (2012) Chem Eng J 179:8
He X, Hong W, Jian C, Li J, Cai Q, Liu W (2019) Int J Hydro Energy 44:23066
Herrmann J, Tahiri H, Aitichou Y, Lassaletta G, Gonzalezelipe A, Fernandez A (1997) Appl Catal b: Environ 13:219
Herrmann JM, Pichat P (1980) J. Chem So. Faraday Trans 1 76:1138
Hu Y, Li D, Sun F, Wang H, Weng Y, Xiong W, Shao Y (2015) RSC Adv 5:54882
Hu K, Jeong S, Elumalai G, Kukunuri S, Fujita J, Ito Y (2020) ACS Appl Energy Mater 3:7535
Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69
Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl. Catal B31:45
Jahangeer A, Alhokbany N, Husain A, Tokeer A, Majeed Khan MA, Alshehri SM (2020) J SolGel Sci Technol 94:493. https://doi.org/10.1007/s10971-020-05274-3
Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna SA (2012) Energy Environ Sci 8:8075
Kim Y, Atherton SJ, Brigham ES, Mallouk TE (1993) J Phys Chem 97:11802
Konstantinou IK, Albanis TA (2004) Appl Catal b: Environ 49:1
Kormann C, Bahnemann DW, Hoffmann MR (1988) J Phys Chem 92:5196
Kumar RS, Dhakal D, Gyawali G, Joshi B, Raj Koirala A, Wohn Lee S (2019) Chem Eng J 373:259
Kumar N, Kumar S, Gusain R, Manyala N, Eslava S, Ray S (2020) ACS Appl Energy Mater 3:9897
Leyzerovich N, Bramnik K, Buhrmester T, Ehrenberg H, Fuess H (2004) J Power Sources 127:76
Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) J Mater Chem a 1:1380
Masteri-Farahani M, Mahdavi S, Rafizadeh M (2013) Ceram Int 39:4619
Minero C, Maurino V and Vione D (2013) in P Pichat (ed) Photocatalytic mechanisms and reaction pathways drawn from kinetic and probe molecules (Wiley-VCH Verlag GmbH & Co. KGaA) https://doi.org/10.1002/9783527645404.ch3
Mocherla PSV, Karthik C, Ubic R, Rao MSR, Sudakar C (2013) Appl. Phys. Lett. 103:022910
Mosleh M (2017) J Mater Sci-Mater El 28:6788
Nguyen TL, Phung VD, Ayalew K, Chun D, Kim IT, Kim KJ, Moon JT (2021) Chem Eng J 415:128813
Oliveira HS, Oliveira LCA, Pereira MC, Ardisson JD, Souza PP, Patricio PO, Moura FCC (2015) New J Chem 39:3051
Panahi-Kalamuei M, Mousavi-Kamazani M, Salavati-Niasari M, Hosseinpour-Mashkani SM (2015) Ultrason Sonochem 23:246
Peng S, Li L, Wu H, Madhavi S, Lou X (2014) Adv Ener Mater 5:1401172
Peng S, Li L, Wu H, Madhavi S, Lou X (2015) Adv Energy Mater 5:1401172
Pillay B, Mathebula MR, Friedrich HB (2009) App Catal A Gen 361:57
Ray SK, Dhakal D, Regmi C, Yamaguchui T, Lee SW (2018b) J Photochem Photobiol A- Chem 350:59
Ray S K, Hur J A (2021) J. Environ. Manage. 278 111562.
Ray SK, Dhakal D, Sohng JK, Kim SY, Lee SW (2018a) Chem Eng J 347:366
Ray SK, Dhakal D, Pandey RP, Lee SW (2017) Mat Sci Eng c 78:1164
Ray SK, Pandey RP, Jeong S, Lee SW (2018c) J Photochem Photobiol A- Chem 367:162
Ray SK, Dhakal D, Hur J, Lee SW (2020) J. Hazard Mater. 385:121553
Razgoniaeva N, Moroz P, Lambright S, Zamkov M (2015) J Phys Chem Lett 6:4352
Sakthikumar K, Ede SR, Mishra S, Kundu S (2016) Dalton Trans 45:8897
Senthilkumar B, Sankar KV, Selvan RK, Danielle M (2013) RSC Adv 3:352
Sameera S, Rao PP, Divya S, Raj AKV (2015) ACS Sustainable Chem Eng 3:1227
Sharma N, Shaju KM, Subba Rao GV, Chowdari BVR, Dong ZL (2004) Chem Mater 16:504
Tennakone K, Ileperuma OA, Bandara JMS, Kiridena WCB (1992) Semicond Sci Technol 7:423
Thilagavathi P, Manikandan A, Sujatha S, Jaganathan SK, Arul Antony S (2016) Nanosci Nanotechnol Lett 8:438
Tong Y, Chen P, Zhang M, Zhou T, Zhang L, Chu W, Xie Y (2017) ACS Catal 8:1
Tributsch H (1980) Electrochemistry at semiconductor and oxidized metal electrode. Von SR Morrison Plenum Press New York 94:85
Umapathy V, Neeraja P, Manikandan A, Ramu P (2017) Trans Nonferrous Met Soc China 27:1785
Vikraman D, Hussain S, Patil SA, Truong L, Arbab AA, Jeong SH, Chun SH, Jung J, Kim HS (2021) ACS Appl Mater Interfaces 13:5061
Wang R, Li J, Jiang P, Gao W, Cong R, Yang T (2021) J Phys Chem Lett 12:1772
Ward JW (1968) J Phys Chem 72:4211
Watcharatharapong T, Minakshi Sundaram M, Chakraborty S, Li D, Shafiullah G, Aughterson RD, Ahuja R (2017) ACS Appl Mater Inter 9:17977
Wendlandt W M and Hecht H G (1966) (Eds) Reflectance and spectroscopy, Interscience publishers-J Wiley and Sons, Inc., New york 298.
Wenzel RN (1936) Ind Eng Chem 28:988
Williamson GK, Smallman RE (1956) Philos Mag 1:34
Yang L, Wang J, Wan Y, Li Y, Xie H, Cheng H, Seo HJ (2016) J Alloys Comp 664:756
Yao M, Hu Z, Liu Y, Liu P (2016) Ionics 22:701
Yoon Y, Nelson J (1984) Am Ind Hyg Assoc J 45:509
Yu J, Yu JC, Ho W, Jiang Z (2002) New J Chem 26:607
Zhang Z, Li W, Ng TW, Kang W, Lee CS, Zhang W (2015) J Mater Chem a 3:20527
Acknowledgements
The authors wish to thank Campus France and the Tunisian Ministry of Higher Education and scientific Research for financial support within program (PHC Utique project No 17G1143). We acknowledge the Institute of D’Alembert (IDA), Dr. Rasta GHASEMI, for the assistance with SEM-EDS analysis. We thank Prof. Kamel Khirouni from Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l’Environnement, Faculté des Sciences de Gabes, Tunisia, for the assistance in reflectance measurements.
Funding
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique(TN), Campus France, PHC Utique project No 17G1143, Thamer Aloui
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aloui, T., Guermazi, H., Fourati, N. et al. Synthesis and characterization of nanosheet NiMoO4 powder as a highly efficient and reusable catalyst for environmental remediation. J Nanopart Res 24, 35 (2022). https://doi.org/10.1007/s11051-022-05417-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11051-022-05417-3