Skip to main content

Advertisement

Log in

Improvement of hydrogen production performance by in situ doping of carbon nanotubes into TiO2 materials

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to prepare highly efficient and stable photocatalytic hydrogen production catalyst, spot-coated carbon nanotube (CNT) composites were prepared by in situ growth of TiO2 on the surface of CNT by adding CNT in four butyl titanate and then sol–gel method under ultrasonic irradiation. Compared with the nanocomposites doped with dopamine, the prepared nanocomposites obviously had lower agglomerated degree and showed excellent hydrogen evolution performance. The optimal hydrogen production performance was 0.0337 mg/ml for the prepared nanocomposites, which had a stable photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Dong F et al (2011) Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J Phys Chem C 115(27):13285–13292

    Article  CAS  Google Scholar 

  • Ghicov A et al (2009) TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chemistry-an Asian J 4(4):520–525

    Article  CAS  Google Scholar 

  • Han ZS et al (2019) Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl Catal B Environ 257:117896

  • Huang WB et al (2015) Hybrid nanostructures of mixed-phase TiO2 for enhanced photoelectrochemical water splitting. RSC Adv 5(69):56098–56102

    Article  CAS  Google Scholar 

  • Hwang SH, Kim C, Jang J (2011) SnO2 nanoparticle embedded TiO2 nanofibers - highly efficient photocatalyst for the degradation of rhodamine B. Catal Commun 12(11):1037–1041

    Article  CAS  Google Scholar 

  • Jia JL et al (2016) Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance. J Ind Eng Chem 33:162–169

    Article  CAS  Google Scholar 

  • Kong JJ et al (2016a) Visible-light decomposition of gaseous toluene over BiFeO3-(BiNe)(2)O-3 heterojunctions with enhanced performance. Chem Eng J 302:552–559

    Article  CAS  Google Scholar 

  • Kong JJ et al (2016b) Multichannel charge separation promoted ZnO/P25 heterojunctions for the photocatalytic oxidation of toluene. Chin J Catal 37(6):869–877

    Article  CAS  Google Scholar 

  • Lee SS et al (2013) Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47(12):4059–4073

    Article  CAS  Google Scholar 

  • Mei B et al (2015) Crystalline TiO2: a generic and effective electron-conducting protection layer for photoanodes and -cathodes. J Phys Chem C 119(27):15019–15027

    Article  CAS  Google Scholar 

  • Ng J et al (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Func Mater 20(24):4287–4294

    Article  CAS  Google Scholar 

  • Nie XJ et al (2021) One-step preparation of C-doped TiO2 nanotubes with enhanced photocatalytic activity by a water-assisted method. CrystEngComm 23(16):3015–3025

    Article  CAS  Google Scholar 

  • Nong SY et al (2018) Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 140(17):5719–5727

    Article  CAS  Google Scholar 

  • Pan J et al (2011) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50(9):2133–2137

    Article  CAS  Google Scholar 

  • Roy P et al (2011) TiO2 nanotubes and their application in dye-sensitized solar cells (vol 2, pg 45, 2010). Nanoscale 3(12):5180–5180

    Article  Google Scholar 

  • Shannon MA et al (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310

    Article  CAS  Google Scholar 

  • Tang CL et al (2016) A green approach assembled multifunctional Ag/AgBr/TNF membrane for clean water production & disinfection of bacteria through utilizing visible light. Appl Catal B Environ 196:57–67

    Article  CAS  Google Scholar 

  • Tripathy J, Lee K, Schmuki P (2014) Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes. Angew Chem Int Ed 53(46):12605–12608

    CAS  Google Scholar 

  • Wang W, Tade MO, Shao ZP (2018) Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog Mater Sci 92:33–63

    Article  Google Scholar 

  • Wang CJ et al (2020a) Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl Catal B Environ 263:118314

  • Wang YX et al (2020b) Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl Catal B Environ 262:118308

  • Wu TW et al (2019) Greatly enhanced electrocatalytic N-2 reduction on TiO2 via V doping. Small Methods 3(11):1900356

  • Xu P et al (2010) I-2-Hydrosol-seeded growth of (I-2)(n)-C-codoped meso/nanoporous TiO2 for visible light-driven photocatalysis. J Phys Chem C 114(20):9510–9517

    Article  CAS  Google Scholar 

  • Zhang R et al (2009) Preparation of necklace-structured TiO2/SnO2 hybrid nanofibers and their photocatalytic activity. J Am Ceram Soc 92(10):2463–2466

    Article  CAS  Google Scholar 

  • Zhao J et al (2020) Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos Part A Appl Sci Manuf 129:105714

  • Zheng JY et al (2018) Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat Commun 9:3572

  • Zhou W et al (2014) Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 136(26):9280–9283

    Article  CAS  Google Scholar 

  • Zhou W et al (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Func Mater 21(10):1922–1930

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Natural Science Foundation of China (No. 51773106, 51701029 and 51778088), Guangdong Basic and Applied Basic Research Foundation (No.2020A1515011274), Guangdong Provincial Natural Science Foundation Project (No.2020A1515010437), and Natural Science Foundation of Inner Mongolia, China (No.2018MS05038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilong Zhao or Shuwen Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Xiang, J., Zhao, Z. et al. Improvement of hydrogen production performance by in situ doping of carbon nanotubes into TiO2 materials. J Nanopart Res 24, 61 (2022). https://doi.org/10.1007/s11051-021-05353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05353-8

Keywords

Navigation