Skip to main content
Log in

Metallic versus covalent interactions in Li-doped gallium clusters

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Atomic gallium has nearly identical ionization energy with aluminum but its bulk is composed of covalent-bound Ga2 dimers. The bonding nature in gallium clusters is still controversial. This paper investigates the geometries, stabilities, and bonding natures of GanLim (n = 4–15, m = 0, 1, 2) using evolutionary algorithm coupled with density functional theory (DFT) calculations. The alkaline atoms act mainly as electron donors. The results indicate that the lowest-energy structures of gallium clusters are quite different to the corresponding aluminum clusters, but Ga6Li2 and Ga13Li demonstrate enhanced thermal and chemical stabilities and their electronic structures are in good accordance with the prediction of the jellium model. Quantitative evaluation of the covalent contributions based on crystal orbital Hamilton population (COHP) analysis suggests that there are stronger covalent interactions than in aluminum clusters. The bonding in gallium clusters is of primarily metallic nature but the covalent interactions affect the geometric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  • Belin C (1980) The structure determination of a new intermetallic compound K3Ga13. Acta Cryst B 36:1339–1343

    Article  Google Scholar 

  • Bernasconi M, Chiarotti GL, Tosatti E (1995) Ab initio calculations of structural and electronic properties of gallium solid-state phases. Phys Rev B 52(14):9988–9998

    Article  CAS  Google Scholar 

  • Cha CY, Ganteför G, Eberhardt W (1994) The development of the 3p and 4p valence band of small aluminum and gallium clusters. J Chem Phys 100:995–1010

    Article  CAS  Google Scholar 

  • Chacko S, Joshi K, Kanhere DG, Blundell SA (2004) Why do gallium clusters have a higher melting point than the bulk? Phys Rev Lett 92(13):135506–135509

    Article  CAS  Google Scholar 

  • Chuang FC, Wang CZ, Ho KH (2006) Structure of neutral aluminum clusters Aln (2≤n≤23): genetic algorithm tight-binding calculations. Phys Rev B 73:125431–125438

    Article  Google Scholar 

  • Corbett JD (2000) Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the zintl boundary. Angew Chem Int Ed 39:670–690

    Article  CAS  Google Scholar 

  • Deringer VL, Tchougreeff AL, Dronskowski R (2011) Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115:5461–5466

    Article  CAS  Google Scholar 

  • Donohue J (1974) The structures of the elements. Wiley, New York

    Google Scholar 

  • Downs AJ, Himmel HJ (2011) New light on the chemistry of the group 13 metals. The group 13 metals aluminium, gallium, indium and thallium: chemical patterns and peculiarities, 1st edn. Wiley, Chichester, pp 1–74

    Google Scholar 

  • Drebov N, Weigend F, Ahlrichs R (2011) Structures and properties of neutral gallium clusters: a theoretical investigation. J Chem Phys 135:044314–044321

    Article  Google Scholar 

  • Dronskowski R, Blöchl PE (1993) Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97:8617–8624

    Article  CAS  Google Scholar 

  • Frank WB, Haupin WE, Vogt H, Bruno M, Thonstad J, Dawless RK, Kvande H, Taiwo OA (2012) Aluminum. Ullmans encyclopedia of industrial chemistry . Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 483–519

    Google Scholar 

  • Frisch et al. 2013Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian Inc., Wallingford

  • Gaston N, Parker AJ (2011) On the bonding of Ga2, structures of Gan clusters and the relation to the bulk structure of gallium. Chem Phys Lett 501:375–378

    Article  CAS  Google Scholar 

  • Gong XG (1992) Structure of small gallium clusters. Phys Lett A 166:369–372

    Article  CAS  Google Scholar 

  • Gong XG, Chiarotti GL, Parrinello M, Tosatti E (1991) α-gallium: a metallic molecular crystal. Phys Rev B 43(17):14277–14280

    Article  CAS  Google Scholar 

  • Guo L (2009) Computational investigation of GanAl (n=1–15) clusters by the density functional theory. Comp Mater Sci 45:951–958

    Article  CAS  Google Scholar 

  • Henning RW, Corbett JD (1997) Cs8Ga11, a new isolated cluster in a binary gallium compound. A family of valence analogues A8Tr11X (A=Cs, Rb; Tr=Ga, In, Tl; X=Cl, Br, I). Inorg Chem 36:6045–6049

    Article  CAS  Google Scholar 

  • Henning RW, Leon-Escamilla EA, Zhao JT, Corbett JD (1997) Stabilization by hydrogen. Synthetic and structural studies of the zintl phase Ba5Ga6H2. Inorg Chem 36:1282–1285

    Article  CAS  Google Scholar 

  • Henry DJ (2012) Structures and stability of doped gallium nanoclusters. J Phys Chem C 116:24814–24823

    Article  CAS  Google Scholar 

  • Hoshino K, Watanabe K, Konishi Y, Taguwa T, Nakajima A, Kaya K (1994) Ionization energies of aluminum-cesium bimetallic clusters (AlnCsm). Chem Phys Lett 231:499–503

    Article  CAS  Google Scholar 

  • Kambe T, Watanabe A, Li M, Tsukamoto T, Imaoka T, Yamamoto K (2020) Superatomic gallium clusters in dendrimers: unique rigidity and reactivity depending on their atomicity. Adv Mater 32:1907167–1907173

    Article  CAS  Google Scholar 

  • Kaware V, Joshi K (2014) Scaling up the shape: a novel growth pattern of gallium clusters. J Chem Phys 141:054308–054317

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  • Krishnamurty S, Joshi K, Zorriasatein S, Kanhere DG (2007) Density functional analysis of the structural evolution of Gan (n=30–55) clusters and its influence on the melting characteristics. J Chem Phys 127:054308–054314

    Article  Google Scholar 

  • Martin WC, Zalubas R (1979) Energy levels of aluminum, Al I through Al XIII. J Phys Chem Ref Data 8:817–864

    Article  CAS  Google Scholar 

  • Nakajima A, Hoshino K, Naganuma T, Sone Y, Kaya K (1991) Ionization potentials of aluminum-sodium bimetallic clusters (AlnNam). J Chem Phys 95:7061–7066

    Article  CAS  Google Scholar 

  • Nunez S, Lopez JM, Aguado A (2012) Neutral and charged gallium clusters: structures, physical properties and implications for the melting features. Nanoscale 4:6481–6492

    Article  CAS  Google Scholar 

  • Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704–244719

    Article  Google Scholar 

  • Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works and why. Acc Chem Res 44(3):227–237

    Article  CAS  Google Scholar 

  • Rao BK, Jena P (1999) Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J Chem Phys 111:1890–1904

    Article  CAS  Google Scholar 

  • Rao BK, Jena P (2000) Alkalization of aluminum clusters. J Chem Phys 113:1508–1513

    Article  CAS  Google Scholar 

  • Sai L, Zhao J, Huang X, Wang J (2012) Structural evolution and electronic properties of medium-sized gallium clusters from ab initio genetic algorithm search. J Nanosci Nanotechno 12:132–137

    Article  CAS  Google Scholar 

  • Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  • Schebarchov D, Gaston N (2011) Throwing jellium at gallium: a systematic superatom analysis of metalloid gallium clusters. Phys Chem Chem Phys 13:21109–21115

    Article  CAS  Google Scholar 

  • Schnepf A, Schnöckel H (2002) Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew Chem Int Ed 41:3532–3552

    Article  CAS  Google Scholar 

  • Shirai T, Reader J, Kramida AE, Sugar J (2007) Spectral data for gallium: Ga I through Ga XXXI. J Phys Chem Ref Data 36:509–615

    Article  CAS  Google Scholar 

  • Song B, Cao PL (2005) Evolution of the geometrical and electronic structures of Gan(n=2–26) clusters: a density-functional theory study. J Chem Phys 123:144312–144320

    Article  Google Scholar 

  • Song B, Yao C, Cao P (2006) Density functional study of structural and electronic properties of GanN (n=1–19) clusters. Phys Rev B 74:035306–035314

    Article  Google Scholar 

  • Steenbergen KG, Schebarchov D, Gaston N (2012) Electronic effects on the melting of small gallium clusters. J Chem Phys 137:144307–144318

    Article  CAS  Google Scholar 

  • Steinberg S, Dronskowski R (2018) The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds. Curr Comput-Aided Drug Des 8:225–251

    Google Scholar 

  • Tonner R, Gaston N (2014) The dimeric nature of bonding in gallium: from small clusters to the α-gallium phase. Phys Chem Chem Phys 16:24244–24249

    Article  CAS  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  • Weiß K, Schnöckel H (2003) The successive fragmentation of a structurally characterized metalloid cluster anion in the gas phase: [Ga13(GaR)6]-→···→[Ga13]-+6GaR(R=C(SiMe3)3). Z Anorg Allg Chem 629:1175–1183

    Article  Google Scholar 

  • Zhao J, Du Q, Zhou S, Kumar V (2020) Endohedrally doped cage clusters. Chem Rev 120:9021–9163

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11664034) and Northwest Normal University, China (NWNU-LKQN2020-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, H. Metallic versus covalent interactions in Li-doped gallium clusters. J Nanopart Res 23, 251 (2021). https://doi.org/10.1007/s11051-021-05329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05329-8

Keywords

Navigation