Skip to main content
Log in

Effect of sulfur precursors on structural, optical, and electrical properties of Cu2SnS3 nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cu2SnS3 (CTS) is an earth-abundant, non-toxic, and eco-friendly semiconductor that makes it promising for various potential optoelectronic applications, including photovoltaics and photodetectors. In this study, the synthesis of CTS nanoparticles by the solvothermal method using different sulfur precursors is reported. The influences of sulfur precursors on the structural, optical, and electrical properties of prepared CTS material are deeply investigated and discussed. Changing the sulfur precursor source has shown noticeable effects on the obtained CTS crystallite size, the formed secondary phases, as well as the CTS nanoparticles morphology. For instance, thiourea is the only sulfur source that was able to produce directly cubic CTS without post-thermal treatment. In contrast, other sulfur sources produce CTS nanoparticles after sulfurization at 580 °C. XRD and transmission electron microscopy (TEM) were employed to study the morphological and structural characteristics of the prepared CTS samples. UV–visible spectroscopy measurements and the Hall-effect technique were used to evaluate the optical and electronic properties of the samples. Changing the sulfur precursors was found to have predominant effects on the CTS nanoparticles’ structural, optical, and electronic properties. Interestingly, CTS nanoparticles with an optical bandgap in the range from 1.4 to 1.7 eV and particle size from 11.21 to 21.23 nm along with the crystallographic phase could be tuned with only changing the sulfur precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Latif MS, Magdy W, Tosuke T, Kanai A, Hessein A, Shaalan NM, Nakamura K, Sugiyama M, Abdel-Moniem A (2020) A comprehensive study on Cu2SnS3 prepared by sulfurization of Cu–Sn sputtered precursor for thin-film solar cell applications. J Mater Sci Mater Electron 31:14577–14590. https://doi.org/10.1007/s10854-020-04018-x

    Article  CAS  Google Scholar 

  • Ataollahi N, Malerba C, Cappelletto E, Ciancio R, Edla R, Di Maggio R, Scardi P (2019) Control of composition and grain growth in Cu2ZnSnS4 thin films from nanoparticle inks. Thin Solid Films 674:12–21. https://doi.org/10.1016/j.tsf.2019.02.004

    Article  CAS  Google Scholar 

  • Baranowski LL, Zawadzki P, Lany S, Toberer ES, Zakutayev A (2016) A review of defects and disorder in multinary tetrahedrally bonded semiconductors. Semicond Sci Technol 31:123004

    Article  Google Scholar 

  • Berg DM, Djemour R, Gütay L, Zoppi G, Siebentritt S, Dale PJ (2012) Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520:6291–6294

    Article  CAS  Google Scholar 

  • Brus VV, Babichuk IS, Orletskyi IG, Maryanchuk PD, Yukhymchuk VO, Dzhagan VM, Yanchuk IB, Solovan MM, Babichuk IV (2016) Raman spectroscopy of Cu-Sn-S ternary compound thin films prepared by the low-cost spray-pyrolysis technique. Appl Opt 55:B158–B162

    Article  CAS  Google Scholar 

  • Chalapathi U, Jayasree Y, Uthanna S, Sundara Raja V (2015) Effect of annealing on the structural, microstructural and optical properties of co-evaporated Cu2SnS3 thin films. Vacuum 117:121–126. https://doi.org/10.1016/j.vacuum.2015.04.006

    Article  CAS  Google Scholar 

  • Chalapathi U, Poornaprakash B, Park S-H (2019) Antimony induced crystal growth for large-grained Cu2SnS3 thin films for photovoltaics. J Power Sources 426:84–92

    Article  CAS  Google Scholar 

  • Chaudhari JJ, Joshi US (2018) Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique. Mater Res Express 5:36203

    Article  Google Scholar 

  • Chen Qingyun, Ma Di (2013) Preparation of nanostructured Cu2SnS3 photocatalysts by solvothermal method. Int J Photoenergy 2013:1–5. https://doi.org/10.1155/2013/593420

    Article  CAS  Google Scholar 

  • Chen X, Wang X, An C, Liu J, Qian Y (2003) Preparation and characterization of ternary Cu–Sn–E (E= S, Se) semiconductor nanocrystallites via a solvothermal element reaction route. J Cryst Growth 256:368–376

    Article  CAS  Google Scholar 

  • Chen F, Zai J, Xu M, Qian X (2013) 3D-hierarchical Cu3SnS4 flowerlike microspheres: controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J Mater Chem A 1:4316–4323

    Article  CAS  Google Scholar 

  • Correa JM, Becerra RA, Ramírez AA, Gordillo G (2016) Fabrication of solar cells based on Cu2ZnSnS4 prepared from Cu2SnS3 synthesized using a novel chemical procedure. EPJ Photovoltaics 7:70305

    Article  Google Scholar 

  • Dias S, Krupanidhi SB (2016) Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications. AIP Adv 6:25217

    Article  Google Scholar 

  • Dias S, Murali B, Krupanidhi SB (2015) Transport properties of solution processed Cu2SnS3/AZnO heterostructure for low cost photovoltaics. Sol Energy Mater Sol Cells 143:152–158

    Article  CAS  Google Scholar 

  • Dias S, Kumawat K, Biswas S, Krupanidhi SB (2017) Solvothermal synthesis of Cu2SnS3 quantum dots and their application in near-infrared photodetectors. Inorg Chem 56:2198–2203. https://doi.org/10.1021/acs.inorgchem.6b02832

    Article  CAS  Google Scholar 

  • Dias S, Banavoth M, Krupanidhi SB (2013) Sol-gel processed Cu2SnS3 films for photovoltaics. In: AIP conf. proc., American Institute of Physics, pp. 525–526

  • Dzhagan VM, Litvinchuk AP, Kruszynska M, Kolny-Olesiak J, Valakh MY, Zahn DRT (2014) Raman scattering study of Cu3SnS4 colloidal nanocrystals. J Phys Chem C 118:27554–27558

    Article  CAS  Google Scholar 

  • El-Deen AG, El-Shafei MH, Hessein A, Hassanin AH, Shaalan NM, Abd El-Moneim A (2020) High-performance asymmetric supercapacitor based hierarchical NiCo2O4@ carbon nanofibers//activated multichannel carbon nanofibers. Nanotechnology 31:365404

    Article  CAS  Google Scholar 

  • Fernandes PA, Salomé PMP, Da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloys Compd 509:7600–7606

    Article  CAS  Google Scholar 

  • Gedi S, Minnam Reddy VR, Alhammadi S, Moon D, Seo Y, Kotte TRR, Park C, Kim WK (2019) Effect of thioacetamide concentration on the preparation of single-phase SnS and SnS2 thin films for optoelectronic applications. Coatings 9:632

    Article  Google Scholar 

  • Ghediya PR, Chaudhuri TK, Raj V, Chugh D, Vora K, Li L, Tan HH, Jagadish C (2018) Direct-coated Cu2SnS3 films from molecular solution inks for solar photovoltaics. Mater Sci Semicond Process 88:120–126

    Article  CAS  Google Scholar 

  • Ghorpade UV, Suryawanshi MP, Shin SW, Kim I, Ahn SK, Yun JH, Jeong C, Kolekar SS, Kim JH (2016) Colloidal wurtzite Cu2SnS3 (CTS) nanocrystals and their applications in solar cells. Chem Mater 28:3308–3317

    Article  CAS  Google Scholar 

  • Hamamura K, Chantana J, Suzuki K, Minemoto T (2017) Influence of Cu/(Ge+Sn) composition ratio on photovoltaic performances of Cu2Sn1−xGexS3 solar cell. Sol Energy 149:341–346. https://doi.org/10.1016/j.solener.2017.04.025

    Article  CAS  Google Scholar 

  • Han J, Zhou Y, Tian Y, Huang Z, Wang X, Zhong J, Xia Z, Yang B, Song H, Tang J (2014) Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices. Front Optoelectron 7:37–45

    Article  Google Scholar 

  • Hassan S, Suzuki M, El-Moneim AA (2012) Effect of Ag-doping on the capacitive behavior of amorphous manganese dioxide electrodes. Electr Electron Eng 2:18–22

    Article  Google Scholar 

  • Hassanien AS, Akl AA (2016) Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct 89:153–169

    Article  CAS  Google Scholar 

  • He M, Kim J, Suryawanshi MP, Lokhande AC, Gang M, Ghorpade UV, Lee DS, Kim JH (2018) Influence of sulfurization temperature on photovoltaic properties of Ge alloyed Cu2SnS3 (CTGS) thin film solar cells. Sol Energy Mater Sol Cells 174:94–101

    Article  CAS  Google Scholar 

  • Hossain ES, Chelvanathan P, Shahahmadi SA, Sopian K, Bais B, Amin N (2018) Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr Appl Phys 18:79–89. https://doi.org/10.1016/j.cap.2017.10.009

    Article  Google Scholar 

  • Kamalanathan M, Hussain S, Gopalakrishnan R, Vishista K (2018) Influence of solvents on solvothermal synthesis of Cu2SnS3 nanoparticles with enhanced optical, photoconductive and electrical properties. Mater Technol 33:72–78. https://doi.org/10.1080/10667857.2017.1376788

  • Kamble A, Sinha B, Vanalakar S, Agawane G, Gang MG, Kim JY, Patil P, Kim JH (2016) Monodispersed wurtzite Cu2SnS3 nanocrystals by phosphine and oleylamine free facile heat-up technique. CrystEngComm 18:2885–2893

    Article  CAS  Google Scholar 

  • Kanai A, Sugiyama M (2021) Na induction effects for J-V properties of Cu2SnS3 (CTS) solar cells and fabrication of a CTS solar cell over-5.2% efficiency. Sol Energy Mater Sol Cells 231:111315

    Article  CAS  Google Scholar 

  • Kim J, Kim H, Cho S, Avis C, Jang J (2018) High Hall mobility P-type Cu2SnS3-Ga2O3 with a high work function. Adv Funct Mater 28:1802941

    Article  Google Scholar 

  • Langford J II, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  • Liang X, Cai Q, Xiang W, Chen Z, Zhong J, Wang Y, Shao M, Li Z (2013) Preparation and characterization of flower-like Cu2SnS3 nanostructures by solvothermal route. J Mater Sci Technol 29:231–236

    Article  CAS  Google Scholar 

  • Liu H, Chen Z, Jin Z, Su Y, Wang Y (2014) A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst. Dalt Trans 43:7491–7498

    Article  CAS  Google Scholar 

  • Lohani K, Isotta E, Ataollahi N, Fanciulli C, Chiappini A, Scardi P (2020) Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulphide (Cu2SnS3, CTS). J Alloys Compd 830:154604. https://doi.org/10.1016/j.jallcom.2020.154604

    Article  CAS  Google Scholar 

  • Lokhande AC, Pawar SA, Jo E, He M, Shelke A, Lokhande CD, Kim JH (2016a) Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles. Opt Mater (amst) 58:268–278

    Article  CAS  Google Scholar 

  • Lokhande AC, Chalapathy RBV, He M, Jo E, Gang M, Pawar SA, Lokhande CD, Kim JH (2016b) Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: a status review. Sol Energy Mater Sol Cells 153:84–107

    Article  CAS  Google Scholar 

  • Maheskumar V, Gnanaprakasam P, Selvaraju T, Vidhya B (2018) Comparative studies on the electrocatalytic hydrogen evolution property of Cu2SnS3 and Cu4SnS4 ternary alloys prepared by solvothermal method. Int J Hydrogen Energy 43:3967–3975

    Article  CAS  Google Scholar 

  • Maskaeva LN, Lipina OA, Markov VF, Fedorova EA, Klochko EA (2018) Optical properties of Cu2S/SnS2 precursor layers for the preparation of kesterite Cu2SnS3 photovoltaic absorber. In: Sino-Russian ASRTU conf. altern. energy mater. technol. devices.—Ekaterinburg, 2018, Knowledge E, pp. 39–44

  • Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:1–8

    Article  Google Scholar 

  • Nomura T, Maeda T, Wada T (2014) Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressure sintering process. Jpn J Appl Phys 53:05FW01

    Article  CAS  Google Scholar 

  • Noori AM, Yavari R, Baharvandi H, Alizade A (2018) Evaluation of different parameters on production of Zr2Cu by mechanical alloying. Silicon 10:1161–1169

    Article  CAS  Google Scholar 

  • Patel B, Waldiya M, Ray A (2018b) Highly phase-pure spray-pyrolysed Cu2SnS3 thin films prepared by hybrid thermal treatment for photovoltaic applications. J Alloys Compd 745:347–354

    Article  CAS  Google Scholar 

  • Patel B, Mukhopadhyay I, Ray A (2018d) Inexpensive Cu2SnS3 grown by room-temperature aqueous bath electrodeposition for thin film solar cells. Int J Mod Phys B 32:1840071

    Article  CAS  Google Scholar 

  • Patel B, Waldiya M, Pati RK, Mukhopadhyay I, Ray A (2018) Spray pyrolyzed Cu2SnS3 thin films for photovoltaic application. In: AIP conf. proc., AIP Publishing LLC, p. 100079

  • Patel B, Narasimman R, Pati RK, Mukhopadhyay I, Ray A (2018) Preparation and characterization of Cu2SnS3 thin films by electrodeposition. In: AIP conf. proc., AIP Publishing LLC, p. 30046

  • Minnam VR, Reddy MR, Pallavolu PR, Guddeti S, Gedi KK, Yarragudi B, Reddy BP, Kim WK, Kotte TRR, Park C (2019) Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. J Ind Eng Chem 76:39–74. https://doi.org/10.1016/J.JIEC.2019.03.035

  • Sayed MH, Robert EVC, Dale PJ, Gütay L (2019) Cu2SnS3 based thin film solar cells from chemical spray pyrolysis. Thin Solid Films 669:436–439

    Article  CAS  Google Scholar 

  • Shelke HD, Lokhande AC, Kim JH, Lokhande CD (2017a) Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method. J Colloid Interface Sci 506:144–153

    Article  CAS  Google Scholar 

  • Shelke HD, Lokhande AC, Patil AM, Kim JH, Lokhande CD (2017b) Cu2SnS3 thin film: structural, morphological, optical and photoelectrochemical studies. Surf Interfaces 9:238–244

    Article  CAS  Google Scholar 

  • Shi L, Wang W, Wu C, Ding J, Li Q (2017) Synthesis of Cu2SnS3 nanosheets as an anode material for sodium ion batteries. J Alloys Compd 699:517–520

    Article  CAS  Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  • Sozak IMS, Yorulmaz U, Atay F, Akyüz I (2021) The effect of sulphur amount in sulphurization stage on secondary phases in Cu2SnS3 (CTS) films. Curr Appl Phys 26:64–71

    Article  Google Scholar 

  • Suzuki K, Chantana J, Minemoto T (2017) Na role during sulfurization of NaF/Cu/SnS2 stacked precursor for formation of Cu2SnS3 thin film as absorber of solar cell. Appl Surf Sci 414:140–146

    Article  CAS  Google Scholar 

  • Tan Q, Sun W, Li Z, Li J-F (2016) Enhanced thermoelectric properties of earth-abundant Cu2SnS3 via In doping effect. J Alloys Compd 672:558–563

    Article  CAS  Google Scholar 

  • van der Pauw LJ (1958) A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev 20:220–224

    Google Scholar 

  • Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31:230–238

    Article  CAS  Google Scholar 

  • Wang J-J, Liu P, Ryan KM (2015) A facile phosphine-free colloidal synthesis of Cu2SnS3 and Cu2ZnSnS4 nanorods with a controllable aspect ratio. Chem Commun 51:13810–13813

    Article  CAS  Google Scholar 

  • Wang C-J, Shei S-C, Chang S-C, Chang S-J (2016) Fabrication and sulfurization of Cu2SnS3 thin films with tuning the concentration of Cu-Sn-S precursor ink. Appl Surf Sci 388:71–76

    Article  CAS  Google Scholar 

  • Wang C, Tian H, Jiang J, Zhou T, Zeng Q, He X, Huang P, Yao Y (2017) Facile synthesis of different morphologies of Cu2SnS3 for high-performance supercapacitors. ACS Appl Mater Interfaces 9:26038–26044

    Article  CAS  Google Scholar 

  • Wu H, Liu D, Zhang H, Wei C, Zeng B, Shi J, Yang S (2012) Solvothermal synthesis and optical limiting properties of carbon nanotube-based hybrids containing ternary chalcogenides. Carbon N Y 50:4847–4855

    Article  CAS  Google Scholar 

  • Xiao W, Xu G, Bi Y, Jiang J, Hu A, Shen K, Lu X, Zhu M (2016) L-cysteine-assisted synthesis of capsule-like Cu2SnS3 nanostructures via solvothermal route. Mater Res Innov 20:351–357

    Article  CAS  Google Scholar 

  • Yang G, Li X, Ji X, Xu X, Wang A, Huang J, Zhu Y, Pan G, Cui S (2020) Phase composition of the earth-abundant Cu2SnS3 thin films with different annealing temperature and its effects on the performance of the related solar cells. Sol Energy 208:206–211

    Article  CAS  Google Scholar 

  • Zaman MB, Poolla R (2020) Morphological tuning of hydrothermally derived visible light active Cu2SnS3 nanostructures and their applications in photocatalytic degradation of reactive industrial dyes. Opt Mater (Amst) 104:109853. https://doi.org/10.1016/j.optmat.2020.109853

    Article  CAS  Google Scholar 

  • Zhang Z, Fu Y, Zhou C, Li J, Lai Y (2015) EDTA-Na2-assisted hydrothermal synthesis of Cu2SnS3 hollow microspheres and their lithium ion storage performances. Solid State Ionics 269:62–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Ministry of Higher Education (MOHE), Egypt, for their financial support and offering the necessary facilities and tools.

Funding

This work was funded by the Ministry of Higher Education (MOHE), Egypt.

Author information

Authors and Affiliations

Authors

Contributions

MA analyzed and interpreted the data regarding the structural, optical, and electrical properties of prepared CTS powder. AR performed the electrical and optical measurements of the samples. AH was a major contributor in writing the manuscript. NS made the first revision. AA made a final revision for all the work and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed S. Abdel-Latif.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Latif, M.S., Rezk, A., Shaalan, N.M. et al. Effect of sulfur precursors on structural, optical, and electrical properties of Cu2SnS3 nanoparticles. J Nanopart Res 23, 216 (2021). https://doi.org/10.1007/s11051-021-05326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05326-x

Keywords

Navigation