Abedini M, Shariatmadari F, Torshizi MAK, Ahmadi H (2017) Effects of a dietary supplementation with zinc oxide nanoparticles, compared to zinc oxide and zinc methionine, on performance, egg quality, and zinc status of laying hens. Livest Sci 203:30–36. https://doi.org/10.1016/j.livsci.2017.06.010
Article
Google Scholar
Agarwal H, Menon S, Venkat Kumar S, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70. https://doi.org/10.1016/j.cbi.2018.03.008
CAS
Article
Google Scholar
Alnarabiji MS, Yahya N, Hamed Y et al (2017) Scalable bio-friendly method for production of homogeneous metal oxide nanoparticles using green bovine skin gelatin. J Clean Prod 162:186–194. https://doi.org/10.1016/j.jclepro.2017.06.010
CAS
Article
Google Scholar
Altunbek M, Baysal A, Çulha M (2014) Influence of surface properties of zinc oxide nanoparticles on their cytotoxicity. Colloids Surfaces B Biointerfaces 121:106–113. https://doi.org/10.1016/j.colsurfb.2014.05.034
CAS
Article
Google Scholar
Ansari SA, Husain Q, Qayyum S, Azam A (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49:2107–2115. https://doi.org/10.1016/j.fct.2011.05.025
CAS
Article
Google Scholar
Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:1–10. https://doi.org/10.1038/srep09578
CAS
Article
Google Scholar
Bagabas A, Alshammari A, Aboud MF, Kosslick H (2013) Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res Lett 8:516. https://doi.org/10.1186/1556-276X-8-516
CAS
Article
Google Scholar
Baimanov D, Cai R, Chen C (2019) Understanding the Chemical Nature of Nanoparticle-Protein Interactions. Bioconjug Chem 30:1923–1937. https://doi.org/10.1021/acs.bioconjchem.9b00348
CAS
Article
Google Scholar
Bandeira M, Giovanela M, Roesch-Ely M et al (2020) Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm 15:100223
Article
Google Scholar
Barros BS, Barbosa R, dos Santos NR et al (2006) Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method. Inorg Mater 42:1348–1351. https://doi.org/10.1134/S0020168506120119
CAS
Article
Google Scholar
Bauermann LP, Del CA, Bill J, Aldinger F (2006) Heterogeneous nucleation of ZnO using gelatin as the organic matrix. Chem Mater 18:2016–2020. https://doi.org/10.1021/cm052317+
CAS
Article
Google Scholar
Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. https://doi.org/10.1021/nl052326h
CAS
Article
Google Scholar
Bressac B, Galvin KM, Liang TJ et al (1990) Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A 87:1973–1977. https://doi.org/10.1073/pnas.87.5.1973
CAS
Article
Google Scholar
Chan YY, Pang YL, Lim S, Chong WC (2021) Facile green synthesis of ZnO nanoparticles using natural-based materials: Properties, mechanism, surface modification and application. J Environ Chem Eng 9:105417. https://doi.org/10.1016/j.jece.2021.105417
CAS
Article
Google Scholar
Chia SL, Leong DT (2016) Reducing ZnO nanoparticles toxicity through silica coating. Heliyon 2:e00177. https://doi.org/10.1016/j.heliyon.2016.e00177
Article
Google Scholar
Corbo C, Molinaro R, Parodi A et al (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11:81–100
CAS
Article
Google Scholar
Devaraj NK, Han TC, Low PL et al (2014) Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Mater Res Innov 18:350–353. https://doi.org/10.1179/1432891714z.000000000980
Article
Google Scholar
Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MC (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28:47–56. https://doi.org/10.1016/j.serj.2017.10.001
CAS
Article
Google Scholar
Divya M, Vaseeharan B, Abinaya M et al (2018) Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J Photochem Photobiol B Biol 178:211–218. https://doi.org/10.1016/j.jphotobiol.2017.11.008
CAS
Article
Google Scholar
Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523. https://doi.org/10.1016/j.sjbs.2015.05.016
CAS
Article
Google Scholar
Ebrahiminezhad A, Moeeni F, Taghizadeh S-M et al (2019) Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation. Foods 8:88. https://doi.org/10.3390/foods8030088
CAS
Article
Google Scholar
El Yamani N, Collins AR, Rundén-Pran E et al (2017) In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis 32:117–126. https://doi.org/10.1093/mutage/gew060
CAS
Article
Google Scholar
Fakhroueian Z, Katouzian F, Esmaeilzadeh P et al (2019) Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections. Appl Nanosci 9:1759–1773. https://doi.org/10.1007/s13204-019-00996-5
CAS
Article
Google Scholar
Ferrone E, Araneo R, Notargiacomo A et al (2019) ZnO Nanostructures and Electrospun ZnO–Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications. Nanomaterials 9:1449. https://doi.org/10.3390/nano9101449
CAS
Article
Google Scholar
Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ Sci Technol 41:8484–8490. https://doi.org/10.1021/es071445r
CAS
Article
Google Scholar
Guo G, Gan Y, Gu F et al (2010) Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix. J Nanomater 2010:1–8. https://doi.org/10.1155/2010/289173
CAS
Article
Google Scholar
Gupta M, Tomar RS, Kaushik S et al (2018) Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbiol 9:2030. https://doi.org/10.3389/fmicb.2018.02030
Article
Google Scholar
Hackenberg S, Zimmermann F-Z, Scherzed A et al (2011) Repetitive exposure to zinc oxide nanoparticles induces dna damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen 52:582–589. https://doi.org/10.1002/em.20661
CAS
Article
Google Scholar
Hackenberg S, Scherzed A, Zapp A et al (2017) Genotoxic effects of zinc oxide nanoparticles in nasal mucosa cells are antagonized by titanium dioxide nanoparticles. Mutat Res Toxicol Environ Mutagen 816–817:32–37. https://doi.org/10.1016/j.mrgentox.2017.02.005
CAS
Article
Google Scholar
Hanley C, Layne J, Punnoose A et al (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103. https://doi.org/10.1088/0957-4484/19/29/295103
CAS
Article
Google Scholar
Heidenau F, Mittelmeier W, Detsch R et al (2005) A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med 16:883–888. https://doi.org/10.1007/s10856-005-4422-3
CAS
Article
Google Scholar
Holmes AM, Mackenzie L, Roberts MS (2020) Disposition and measured toxicity of zinc oxide nanoparticles and zinc ions against keratinocytes in cell culture and viable human epidermis. Nanotoxicology 14:263–274. https://doi.org/10.1080/17435390.2019.1692382
CAS
Article
Google Scholar
Hsu A, Liu F, Leung YH et al (2014) Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale 6:10323–10331. https://doi.org/10.1039/c4nr02366h
CAS
Article
Google Scholar
Huang Z, Zheng X, Yan D et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144. https://doi.org/10.1021/la7035949
CAS
Article
Google Scholar
Ickrath P, Wagner M, Scherzad A et al (2017) Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int J Environ Res Public Health 14:1590. https://doi.org/10.3390/ijerph14121590
CAS
Article
Google Scholar
Jackson M, Choo L-P, Watson PH et al (1995) Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim Biophys Acta - Mol Basis Dis 1270:1–6. https://doi.org/10.1016/0925-4439(94)00056-V
Article
Google Scholar
Jiang J, Pi J, Cai J (2018) The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl 2018:1–18. https://doi.org/10.1155/2018/1062562
CAS
Article
Google Scholar
Kadiyala U, Turali-Emre ES, Bahng JH et al (2018) Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant: Staphylococcus aureus (MRSA). Nanoscale 10:4927–4939. https://doi.org/10.1039/c7nr08499d
CAS
Article
Google Scholar
Kang SZ, Wu T, Li X, Mu J (2010) A facile gelatin-assisted preparation and photocatalytic activity of zinc oxide nanosheets. Colloids Surfaces A Physicochem Eng Asp 369:268–271. https://doi.org/10.1016/j.colsurfa.2010.08.029
CAS
Article
Google Scholar
Khan MF, Ansari AH, Hameedullah M et al (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci Rep 6:1–12. https://doi.org/10.1038/srep27689
CAS
Article
Google Scholar
Kim KM, Choi MH, Lee JK et al (2014) Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes. Int J Nanomedicine 9:41–56. https://doi.org/10.2147/IJN.S57923
CAS
Article
Google Scholar
Kolodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: A review. Materials (basel) 7:2833–2881. https://doi.org/10.3390/ma7042833
CAS
Article
Google Scholar
Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (shanghai) 39:549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x
CAS
Article
Google Scholar
Kraegeloh A, Suarez-Merino B, Sluijters T, Micheletti C (2018) Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. Nanomaterials 8:239. https://doi.org/10.3390/nano8040239
CAS
Article
Google Scholar
Kulkarni VS, Shaw C (2016) Use of Polymers and Thickeners in Semisolid and Liquid Formulations. In: Essential Chemistry for Formulators of Semisolid and Liquid Dosages. Elsevier, pp 43–69
Kumar P, Kumar P, Deep A, Bharadwaj LM (2013a) Synthesis and conjugation of ZnO nanoparticles with bovine serum albumin for biological applications. Appl Nanosci 3:141–144. https://doi.org/10.1007/s13204-012-0101-0
CAS
Article
Google Scholar
Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013b) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:30. https://doi.org/10.1186/2228-5326-3-30
CAS
Article
Google Scholar
Kumar A, Dixit CK (2017) Methods for characterization of nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier Inc., pp 44–58
Lallo da Silva B, Abuçafy MP, Berbel Manaia E et al (2019) Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview. Int J Nanomedicine 14:9395–9410. https://doi.org/10.2147/IJN.S216204
Article
Google Scholar
Leung YH, Chan CMN, Ng AMC et al (2012) Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 23:475703. https://doi.org/10.1088/0957-4484/23/47/475703
CAS
Article
Google Scholar
Lin S, Yu T, Yu Z et al (2018) Nanomaterials Safer-by-Design: An Environmental Safety Perspective. Adv Mater 30:1–5. https://doi.org/10.1002/adma.201705691
CAS
Article
Google Scholar
Luo M, Shen C, Feltis BN et al (2014) Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale 6:5791–5798. https://doi.org/10.1039/c4nr00458b
CAS
Article
Google Scholar
Miao AJ, Zhang XY, Luo Z et al (2010) Zinc oxide-engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822. https://doi.org/10.1002/etc.340
CAS
Article
Google Scholar
Mishra PK, Mishra H, Ekielski A et al (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22:1825–1834. https://doi.org/10.1016/j.drudis.2017.08.006
CAS
Article
Google Scholar
MoghriMoazzen MA, Borghei SM, Taleshi F (2013) Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl Nanosci 3:295–302. https://doi.org/10.1007/s13204-012-0147-z
CAS
Article
Google Scholar
Mohan Kumar K, Mandal BK, Appala Naidu E et al (2013) Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 104:171–174. https://doi.org/10.1016/j.saa.2012.11.025
CAS
Article
Google Scholar
Møller P, Azqueta A, Boutet-Robinet E et al (2020) Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nat Protoc 15:3817–3826
Article
Google Scholar
Moratin H, Scherzad A, Gehrke T et al (2018) Toxicological Characterization of ZnO Nanoparticles in Malignant and Non-Malignant Cells. Environ Mol Mutagen 59:247–259. https://doi.org/10.1002/em.22156
CAS
Article
Google Scholar
Nandhini G, Suriyaprabha R, Maria Sheela Pauline W et al (2018) Influence of solvents on the changes in structure, purity, and in vitro characteristics of green-synthesized ZnO nanoparticles from Costus igneus. Appl Nanosci 8:1353–1360. https://doi.org/10.1007/s13204-018-0810-0
CAS
Article
Google Scholar
Nindiyasari F, Fernández-Díaz L, Griesshaber E et al (2014) Influence of gelatin hydrogel porosity on the crystallization of CaCO3. Cryst Growth Des 14:1531–1542. https://doi.org/10.1021/cg401056t
CAS
Article
Google Scholar
Osseni R, Debbasch C, Christen M-O et al (1999) Tacrine-induced Reactive Oxygen Species in a Human Liver Cell Line: The Role of Anethole Dithiolethione as a Scavenger. Toxicol Vitr 13:683–688. https://doi.org/10.1016/S0887-2333(99)00050-8
CAS
Article
Google Scholar
Pandurangan M, Kim DH (2015) In vitro toxicity of zinc oxide nanoparticles: a review. J Nanoparticle Res 17:158. https://doi.org/10.1007/s11051-015-2958-9
CAS
Article
Google Scholar
Pei X, Xiao Z, Liu L et al (2019) Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J Sci Food Agric 99:1366–1374. https://doi.org/10.1002/jsfa.9312
CAS
Article
Google Scholar
Pelicano CM, Magdaluyo E, Ishizumi A (2016) Temperature Dependence of Structural and Optical Properties of ZnO Nanoparticles Formed by Simple Precipitation Method. In: MATEC Web of Conferences. pp 02001–1–02001–4
Petković J, Žegura B, Stevanović M et al (2011) DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5:341–353. https://doi.org/10.3109/17435390.2010.507316
CAS
Article
Google Scholar
Pourrahimi AM, Liu D, Pallon LKH et al (2014) Water-based synthesis and cleaning methods for high purity ZnO nanoparticles-comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv 4:35568–35577. https://doi.org/10.1039/c4ra06651k
CAS
Article
Google Scholar
Pranjali P, Meher MK, Raj R et al (2019) Physicochemical and Antibacterial Properties of PEGylated Zinc Oxide Nanoparticles Dispersed in Peritoneal Dialysis Fluid. ACS Omega 4:19255–19264. https://doi.org/10.1021/acsomega.9b02615
CAS
Article
Google Scholar
Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7:184–192. https://doi.org/10.1016/j.nano.2010.10.001
CAS
Article
Google Scholar
Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028. https://doi.org/10.1021/la104825u
CAS
Article
Google Scholar
Reddy KM, Feris K, Bell J et al (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902. https://doi.org/10.1063/1.2742324
CAS
Article
Google Scholar
Reed RB, Ladner DA, Higgins CP et al (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99. https://doi.org/10.1002/etc.708
CAS
Article
Google Scholar
Reshma VG, Mohanan PV (2017) Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colloids Surfaces B Biointerfaces 157:182–190. https://doi.org/10.1016/j.colsurfb.2017.05.069
CAS
Article
Google Scholar
Roy Choudhury S, Ordaz J, Lo C-L et al (2017) Zinc oxide Nanoparticles-Induced Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol Sci 156:261–274. https://doi.org/10.1093/toxsci/kfw252
CAS
Article
Google Scholar
Sahu D, Kannan GM, Tailang M, Vijayaraghavan R (2016) In Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. J Nanosci 2016:1–9. https://doi.org/10.1155/2016/4023852
CAS
Article
Google Scholar
Saliani M, Jalal R, Goharshadi EK (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol 8:1–6. https://doi.org/10.5812/jjm.17115
Article
Google Scholar
Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182. https://doi.org/10.1016/S0167-7012(03)00037-X
CAS
Article
Google Scholar
Segneanu AE, Gozescu I, Dabici A, et al (2012) Organic Compounds FT-IR Spectroscopy. In: Uddin J (ed) Macro To Nano Spectroscopy. IntechOpen, pp 145–164
Senapati VA, Kumar A (2018) ZnO nanoparticles dissolution, penetration and toxicity in human epidermal cells. Influence of pH Environ Chem Lett 16:1129–1135. https://doi.org/10.1007/s10311-018-0736-5
CAS
Article
Google Scholar
Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870. https://doi.org/10.1007/s10495-012-0705-6
CAS
Article
Google Scholar
Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 29:300–311. https://doi.org/10.1080/15376516.2018.1553221
CAS
Article
Google Scholar
Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0
CAS
Article
Google Scholar
Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x
CAS
Article
Google Scholar
Sliwinska A, Kwiatkowski D, Czarny P et al (2015) Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles. Toxicol Mech Methods 25:176–183. https://doi.org/10.3109/15376516.2015.1006509
CAS
Article
Google Scholar
Sotiriou GA, Watson C, Murdaugh KM et al (2014) Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environ Sci Nano 1:144–153. https://doi.org/10.1039/c3en00062a
CAS
Article
Google Scholar
Stanković A, Dimitrijević S, Uskoković D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surfaces B Biointerfaces 102:21–28. https://doi.org/10.1016/j.colsurfb.2012.07.033
CAS
Article
Google Scholar
Stanković A, Sezen M, Milenković M et al (2016) PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. J Nanomater 2016:1–10. https://doi.org/10.1155/2016/9425289
CAS
Article
Google Scholar
Taghizadeh S-M, Lal N, Ebrahiminezhad A et al (2020) Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent. Nanomaterials 10:530. https://doi.org/10.3390/nano10030530
CAS
Article
Google Scholar
Talam S, Karumuri SR, Gunnam N (2012) Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol 2012:1–6. https://doi.org/10.5402/2012/372505
CAS
Article
Google Scholar
Tayel AA, El-Tras WF, Moussa S et al (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31:211–218. https://doi.org/10.1111/j.1745-4565.2010.00287.x
CAS
Article
Google Scholar
Tiwari V, Mishra N, Gadani K et al (2018) Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front Microbiol 9:1218. https://doi.org/10.3389/fmicb.2018.01218
Article
Google Scholar
Top A, Çetinkaya H (2015) Zinc oxide and zinc hydroxide formation via aqueous precipitation: Effect of the preparation route and lysozyme addition. Mater Chem Phys 167:77–87. https://doi.org/10.1016/j.matchemphys.2015.10.013
CAS
Article
Google Scholar
Tseng YH, Lin HY, Liu MH et al (2009) Biomimetic synthesis of nacrelike faceted mesocrystals of ZnO-gelatin composite. J Phys Chem C 113:18053–18061. https://doi.org/10.1021/jp905145y
CAS
Article
Google Scholar
Umamaheswari A, Prabu SL, John SA, Puratchikody A (2021) Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol Reports 29:e00595. https://doi.org/10.1016/j.btre.2021.e00595
CAS
Article
Google Scholar
Venu Gopal VR, Kamila S (2017) Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci 7:75–82. https://doi.org/10.1007/s13204-017-0553-3
CAS
Article
Google Scholar
Wahab R, Kim Y-S, Shin H-S (2009) Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. Mater Trans 50:2092–2097. https://doi.org/10.2320/matertrans.M2009099
CAS
Article
Google Scholar
Wahab R, Siddiqui MA, Saquib Q et al (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surfaces B Biointerfaces 117:267–276. https://doi.org/10.1016/j.colsurfb.2014.02.038
CAS
Article
Google Scholar
Waldherr M, Mišík M, Ferk F et al (2018) Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals? Arch Toxicol 92:921–934. https://doi.org/10.1007/s00204-017-2109-4
CAS
Article
Google Scholar
Westerink WMA, Schoonen WGEJ (2007) Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol Vitr 21:1581–1591. https://doi.org/10.1016/j.tiv.2007.05.014
CAS
Article
Google Scholar
Wolska-Pietkiewicz M, Tokarska K, Grala A et al (2018) Safe-by-Design Ligand-Coated ZnO Nanocrystals Engineered by an Organometallic Approach: Unique Physicochemical Properties and Low Toxicity toward Lung Cells. Chem - A Eur J 24:4033–4042. https://doi.org/10.1002/chem.201704207
CAS
Article
Google Scholar
Xia T, Kovochich M, Liong M et al (2008) Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano 2:2121–2134. https://doi.org/10.1021/nn800511k
CAS
Article
Google Scholar
Xia T, Zhao Y, Sager T et al (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235. https://doi.org/10.1021/nn1028482
CAS
Article
Google Scholar
Xiao L, Liu C, Chen X, Yang Z (2016) Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol 90:76–83. https://doi.org/10.1016/j.fct.2016.02.002
CAS
Article
Google Scholar
Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646. https://doi.org/10.1016/S1466-6049(01)00197-0
CAS
Article
Google Scholar
Yang H, Liu C, Yang D et al (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78. https://doi.org/10.1002/jat.1385
CAS
Article
Google Scholar
Yin H, Casey PS (2014) Effects of iron or manganese doping of ZnO nanoparticles on their dissolution, ROS generation and cytotoxicity. RSC Adv 4:26149–26157. https://doi.org/10.1039/c4ra02481h
CAS
Article
Google Scholar
Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of Surface Chemistry on Cytotoxicity, Genotoxicity, and the Generation of Reactive Oxygen Species Induced by ZnO Nanoparticles. Langmuir 26:15399–15408. https://doi.org/10.1021/la101033n
CAS
Article
Google Scholar
Yin H, Chen R, Casey PS et al (2015) Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv 5:73963–73973. https://doi.org/10.1039/c5ra14870g
CAS
Article
Google Scholar
Zak AK, Majid WHA, Darroudi M, Yousefi R (2011) Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett 65:70–73. https://doi.org/10.1016/j.matlet.2010.09.029
CAS
Article
Google Scholar
Zhou J, Zhao F, Wang Y et al (2007) Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J Lumin 122–123:195–197. https://doi.org/10.1016/j.jlumin.2006.01.089
CAS
Article
Google Scholar
Zijno A, De Angelis I, De Berardis B et al (2015) Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol Vitr 29:1503–1512. https://doi.org/10.1016/j.tiv.2015.06.009
CAS
Article
Google Scholar