Skip to main content
Log in

Synthesis of silicon nanoparticles using a novel reactor with an elongated reaction zone created by coaxially aligned SiH4 gas and a CO2 laser beam

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrated silicon nanoparticle synthesis using a novel CO2 laser pyrolysis reactor. The reactor was designed to have an elongated reaction zone more than 10 times longer than conventional laser pyrolysis systems by aligning the laser beam and precursor gas stream in the same direction within the simple tubular reactor. Experimental results showed that the elongated reaction zone contributed to production of silicon nanoparticles using SiH4 gas and influenced the size distribution of nanoparticles. Since the proposed reactor utilized the laser beam more efficiently without focusing the laser beam, it would be beneficial to large-scale production tolerating higher power CO2 lasers. Silicon nanoparticle synthesis mechanisms using a proposed reactor and synthesized nanoparticles were discussed in detail based on X-ray diffraction and transmission electron microscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alexandrescu R, Morjan I, Scarisoreanu M, Birjega R, Popovici E, Soare I, Gavrila-Florescu L, Voicu I, Sandu I, Dumitrache F, Prodan G, Vasile E, Figgemeier E (2007) Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films. https://doi.org/10.1016/j.tsf.2007.03.106

  • Antoniadis H, Jiang F, Shan W, Liu Y (2010) All screen printed mass produced silicon ink selective emitter solar cells. 35th IEEE Photovolt Special Conf. https://doi.org/10.1109/PVSC.2010.5614092

  • Bauer RA, Becht JG, Kruis FE, Scarlett B, Schoonman J (1991) Laser synthesis of low‐agglomerated submicrometer silicon nitride powders from chlorinated silanes. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1991.tb06840.x

  • Belchi R, Habert A, Foy E, Gheno A, Vedraine S, Antony R, Ratier B, Bouclé J, Herlin-Boime N (2019) One-step synthesis of TiO2/graphene nanocomposites by laser pyrolysis with well-controlled properties and application in perovskite solar cells. ACS omega. https://doi.org/10.1021/acsomega.9b01352

  • Bi X, Ganguly B, Huffman GP, Huggins FE, Endo M, Eklund PC (1993) Nanocrystalline α–Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis. J Mater Res. https://doi.org/10.1557/JMR.1993.1666

  • Bi X, Kambe N, Horne CR, Gardner JT, Mosso RJ, Chiruvolu S, Kumar S, Mcgovern WE, DeMascarel PJ, Lynch RB (2009) Nanoparticle production and corresponding structures. US Patent Application No. 12/152,428.

  • Bomatí‐Miguel O, Tartaj P, Morales MP, Bonville P, Golla‐Schindler U, Zhao XQ, Veintemillas‐Verdaguer S (2006) Core–shell iron–iron oxide nanoparticles synthesized by laser‐induced pyrolysis. Small. https://doi.org/10.1002/smll.200600209

  • Bouhadoun S, Guillard C, Dapozze F, Singh S, Amans D, Bouclé J, Herlin-Boime N (2015) One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Appl Catal B. https://doi.org/10.1016/j.apcatb.2015.03.022

  • Cannon WR, Danforth SC, Flint JH, Haggerty JS, Marra RA (1982) Sinterable ceramic powders from laser‐driven reactions: I, process description and modeling. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1982.tb10464.x

  • Cauchetier M, Croix O, Luce M, Baraton MI, Merle T, Quintard P (1991) Nanometric Si/C/N composite powders: laser synthesis and IR characterization. J Eur Ceram Soc. https://doi.org/10.1016/0955-2219(91)90097-J

  • Chambers FA (1987) Apparatus and method for heating materials with a laser heat source. US Patent 4,627,169

  • Chiruvolu S, Altman I, Frey BM, Li W, Liu G, Lynch RB, Pengra-Leung GE, Srinivasan U (2014) Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods. US Patent No. 8,895,962

  • D’Amato R, Falconieri M, Fabbri F, Bello V, Borsella E (2010) Preparation of luminescent Si nanoparticles by tailoring the size, crystallinity and surface composition. J Nanopart Res. https://doi.org/10.1007/s11051-009-9746-3

  • Danforth SC, Flint JH, Cannon WR, Haggerty JS (1979) Laser synthesis of silicon nitride powders. AIP Conf Proc. https://doi.org/10.1063/1.31734

  • Di Nunzio PE, Martelli S (2006) Coagulation and aggregation model of silicon nanoparticles from laser pyrolysis. Aerosol Sci Tech. https://doi.org/10.1080/02786820600806522

  • Dumitrache F, Morjan I, Alexandrescu R, Ciupina V, Prodan G, Voicu I, Fleaca C, Albu L, Savoiu M, Sandu I, Popovici E, Soare I (2005) Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2005.01.037

  • Ehbrecht M, Faerber M, Rohmund F, Smirnov VV, Stelmakh O, Huisken F (1993) CO2-laser-driven production of carbon clusters and fullerenes from the gas phase. Chem Phys Lett. https://doi.org/10.1016/0009-2614(93)85451-S

  • Ehbrecht M, Kohn B, Huisken F, Laguna MA, Paillard V (1997) Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition. Phys Rev B. https://doi.org/10.1103/PhysRevB.56.6958

  • Erogbogbo F, Liu T, Ramadurai N, Tuccarione P, Lai L, Swihart MT, Prasad PN (2011) Creating ligand-free silicon germanium alloy nanocrystal inks. ACS Nano. https://doi.org/10.1021/nn2023304

  • Fleaca C, Dumitrache F, Dutu E, Luculescu C, Niculescu A, Ilie A, Vasile E (2016) One step synthesis of tin-carbon core-shell nanoparticles using laser pyrolysis technique. U P B Sci Bull , Series B (website: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullf7d_976113.pdf))

  • Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud J (2002) Carbon nanoparticles from laser pyrolysis. Carbon. https://doi.org/10.1016/S0008-6223(02)00195-1

  • Ge M, Kim S, Nie A, Shahbazian-Yassar R, Mecklenburg M, Lu Y, Fang X, Shen C, Rong J, Park SY, Kim DS, Kim JY, Zhou C (2015) Capacity retention behavior and morphology evolution of SixGe1−x nanoparticles as lithium-ion battery anode. Nanotechnology. https://doi.org/10.1088/0957-4484/26/25/255702

  • Grimes CA, Qian D, Dickey EC, Allen JL, Eklund PC (2000) Laser pyrolysis fabrication of ferromagnetic γ′-Fe4N and FeC nanoparticles. J Appl Phys. https://doi.org/10.1063/1.373419

  • He Y, Li X, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater. https://doi.org/10.1021/cm048128t

  • Herlin N, Luce M, Musset E, Cauchetier M (1994) Synthesis and characterization of nanocomposite Si/C/N powders by laser spray pyrolysis of hexamethyldisilazane. J Eur Ceram Soc. https://doi.org/10.1016/0955-2219(94)90002-7

  • Holunga DM, Mcgovern WE, Lynch RB, inventors (2009) Laser pyrolysis with in-flight particle manipulation for powder engineering. US Patent Application No. 12/077,076

  • Huisken F, Ledoux G, Guillois O, Reynaud C (2002) Light‐emitting silicon nanocrystals from laser pyrolysis. Adv Mater. https://doi.org/10.1002/adma.200290021

  • Jäger C, Mutschke H, Huisken F, Alexandrescu R, Morjan I, Dumitrache F, Barjega R, Soare I, David B, Schneeweiss O (2006) Iron-carbon nanoparticles prepared by CO2 laser pyrolysis of toluene and iron pentacarbonyl. Appl Phys A. https://doi.org/10.1007/s00339-006-3665-2

  • Kabashin AV, Singh A, Swihart MT, Zavestovskaya IN, Prasad PN (2019) Laser-processed nanosilicon: a multifunctional nanomaterial for energy and healthcare. ACS Nano. https://doi.org/10.1021/acsnano.9b04610.

  • Kim S, Hwang C, Park SY, Ko S, Park H, Choi WC, Kim JB, Kim DS, Park S, Kim JY, Song H (2014a) High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis. J Mater Chem A. https://doi.org/10.1039/C4TA03358B

  • Kim S, Walker B, Park SY, Choi H, Ko S, Jeong J, Yun MH, Lee JC, Kim DS, Kim JY (2014b) Size tailoring of aqueous germanium nanoparticle dispersions. Nanoscale. https://doi.org/10.1039/C4NR01596G

  • Kim S, Park SY, Jeong J, Kim G, Rohani P, Kim DS, Swihart MT, Kim JY (2015) Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis. Nanotechnology. https://doi.org/10.1088/0957-4484/26/30/305703

  • Kruis FE, Oostra W, Marijnissen J, Schoonman J, Scarlett B (1998) Particle formation paths in the synthesis of silicon nitride powder in a laser-heated aerosol reactor. J Eur Seram. https://doi.org/10.1016/S0955-2219(98)00006-5

  • Kumar S, Bi X, Kambe N (2004) Silicon oxide particles. US Patent No. 6,726,990

  • Li X, Jurbergs D (2009) Optimized laser pyrolysis reactor and methods therefor. US Patent Application No. 12/054,133

  • Li X, He Y, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF−HNO3 etching. Langmuir. https://doi.org/10.1021/la036219j

  • Martinez G, Malumbres A, Lopez A, Mallada R, Hueso JL, Santamaria J (2018) Laser-assisted production of carbon-encapsulated Pt-Co alloy nanoparticles for preferential oxidation of carbon monoxide. Front Chem. https://doi.org/10.3389/fchem.2018.00487

  • Miyamoto I, Nanba H, Maruo H (1990) Analysis of thermally induced optical distortion in lens during focusing high-power CO2 laser beam. Proc SPIE CO2 Lasers and Applications II. https://doi.org/10.1117/12.20537

  • Morales MP, Bomati-Miguel O, De Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O’Grady K (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater. https://doi.org/10.1016/S0304-8853(03)00461-X

  • Mordkovich VZ (2000) The observation of large concentric shell fullerenes and fullerene-like nanoparticles in laser pyrolysis carbon blacks. Chem Mater. https://doi.org/10.1021/cm0001814

  • Perez H, Jorda V, Bonville P, Vigneron J, Frégnaux M, Etcheberry A, Quinsac A, Habert A, Leconte Y (2018) Synthesis and characterization of carbon/nitrogen/iron based nanoparticles by laser pyrolysis as non-noble metal electrocatalysts for oxygen reduction. C—J Carbon Res. https://doi.org/10.3390/c4030043

  • Puttick KE, Holm R, Ristau D, Natzschka U, Kiriakidis G, Garawal N, Judd E, Holland D, Greening D, Ellis N, Wilkinson M, Garcia Pamies M, Sanviti C (1998) Continuous-wave CO2-laser-induced damage thresholds in optical components. Proc SPIE Laser-Induced Damage in Optical Materials. https://doi.org/10.1117/12.307045

  • Rohani P, Kim S, Swihart MT (2016) Boron nanoparticles for room‐temperature hydrogen generation from water. Adv Energy Mater. https://doi.org/10.1002/aenm.201502550

  • Rohani P, Banerjee S, Sharifi‐Asl S, Malekzadeh M, Shahbazian‐Yassar R, Billinge SJL, Swihart MT (2019) Synthesis and properties of plasmonic boron‐hyperdoped silicon nanoparticles. Adv Funct Mater. https://doi.org/10.1002/adfm.201807788

  • Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Jouanneau Si Larbi S, Herlin-Boime N, Reynaud C (2015) One-step synthesis of Si@ C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl Mater Interfaces. https://doi.org/10.1021/am5089742

  • Tomizawa Y, Imamura T, Soeda M, Ikeda Y, Shiro T (2015) Laser doping of boron-doped Si paste for high-efficiency silicon solar cells. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.54.08KD06

  • van Erven J, Munao D, Fu Z, Trzeciak T, Janssen R, Kelder E, Marijnissen JC (2009) The improvement and upscaling of a laser chemical vapor pyrolysis reactor. KONA Powder Particle J. https://doi.org/10.14356/kona.2009015

  • Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ (2017) Novel preparation of N‐doped SnO2 nanoparticles via laser‐assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater. https://doi.org/10.1002/adma.201603286

  • Zachariah MR, Carrier MJ (1999) Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. J Aerosol Sci. https://doi.org/10.1016/S0021-8502(98)00782-4

Download references

Funding

This research was supported by 2017 Research Grant from Kangwon National University and National Research Foundation of Korea (NRF-2017R1C1B2011606 and 2021R1I1A3059984).

Author information

Authors and Affiliations

Authors

Contributions

SK conceived the research. SM and SK built the experimental set-up. SM and HL performed experiments. HL performed additional experiments to clarify this work. SK analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seongbeom Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeng, SH., Lee, H. & Kim, S. Synthesis of silicon nanoparticles using a novel reactor with an elongated reaction zone created by coaxially aligned SiH4 gas and a CO2 laser beam. J Nanopart Res 23, 134 (2021). https://doi.org/10.1007/s11051-021-05262-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05262-w

Keywords

Navigation