Skip to main content
Log in

Advances in dendrimer-mediated targeted drug delivery to the brain

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Treating diseases of the central nervous system (CNS) still remains a problem for the researchers. Existence of specific anatomical barriers, especially the blood brain barrier (BBB), restricts the brain mobility and hinders the effectiveness of different drug therapies. Rapid nanotechnological developments have given promising solutions to this challenge. Therefore, during the last few decades, a variety of nanocarriers have been designed to deliver drugs to the brain. Dendrimers are highly branched, three-dimensional macromolecules with tailor-made surface functionality and internal cavities that make them interesting carrier to deliver the drug to the brain. Significant advances have been made in dendrimer-mediated targeted delivery to the brain in last two decades. This review article deals majorly with recent advances in dendrimer-mediated delivery to the brain with discussions on the mechanisms of biodistribution and toxicity of dendrimer crossing the BBB. This will assist researchers in designing the new strategies to deal with major challenges related to the targeted delivery of CNS therapeutic agents to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afsana JVK, Haider N, Jain K (2019) 3D printing in personalized drug delivery. Curr Pharm Des 24(42):5062–5071

    Google Scholar 

  • Ahmad J, Gautam A, Komath S, Bano M, Garg A, Jain K (2019) Topical nano-emulgel for skin disorders: formulation approach and characterization. Recent Pat Antiinfect Drug Discov 14(1):36–48

    CAS  Google Scholar 

  • Åkesson A, Cárdenas M, Elia G, Monopoli MP, Dawson KA (2012) The protein corona of dendrimers: PAMAM binds and activates complement proteins in human plasma in a generation dependent manner. RSC Adv 2:11245–11248

    Google Scholar 

  • Alexander A, Khan J, Saraf S, Saraf S (2014) Polyethylene glycol (PEG)–poly(N-isopropylacrylamide)(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm 88(3):575–585

    CAS  Google Scholar 

  • Alexander A, Patel RJ, Saraf S, Saraf S (2016) Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 241:110–124

    CAS  Google Scholar 

  • Alexander A, Agrawal M, Uddin A, Siddique S, Shehata AM, Shaker MA, Ata Ur Rahman S, Abdul MIM, Shaker MA (2019) Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 14:5895–5909

    CAS  Google Scholar 

  • Alsaggar M, Liu D (2018) Organ-based drug delivery. J Drug Target 26(5-6):385–397

    CAS  Google Scholar 

  • Arora S, Layek B, Singh J (2020) Design and validation of liposomal ApoE2 gene delivery system to evade blood–brain barrier for effective treatment of Alzheimer's disease. Mol Pharm 18:714–725. https://doi.org/10.1021/acs.molpharmaceut.0c00461

    Article  CAS  Google Scholar 

  • Arranz-Romera A, Esteban-Pérez S, Garcia-Herranz D, Aragón-Navas A, Bravo-Osuna I, Herrero-Vanrell R (2019) Combination therapy and co-delivery strategies to optimize treatment of posterior segment neurodegenerative diseases. Drug Discov Today 24(8):1644–1653

    CAS  Google Scholar 

  • Aslam M, Javed MN, Deeb HH, Nicola MK, Sabir AM, Hasnain MS, Alam MS, Waziri A (2020) Lipid carriers mediated targeted delivery of nutraceuticals: challenges, role of blood brain barrier and promises of nanotechnology based approaches in neuronal disorders. Curr Drug Metab 21. https://doi.org/10.2174/1389200221999200728143511

  • Auclair J, Morel E, Wilkinson KJ, Gagné F (2017) Synergistic toxicity of PAMAM dendrimers and minocycline to rainbow trout hepatocytes. EC Pharmacol Toxicol 3(5):138–145

    Google Scholar 

  • Bajwa N, Mehra NK, Jain K, Jain NK (2016a) Pharmaceutical and biomedical applications of quantum dots. Artif Cells Nanomed Biotechnol 44(3):758–768

    CAS  Google Scholar 

  • Bajwa N, Kumar Mehra N, Jain K, Kumar Jain N (2016b) Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol 44(7):1774–1782

    CAS  Google Scholar 

  • Banks WA (2016) From blood–brain barrier to blood–brain interface : new opportunities for CNS drug delivery. Nat Rev Drug Discov 15(4):275–292

    CAS  Google Scholar 

  • Bellettato CM, Scarpa M (2018) Possible strategies to cross the blood–brain barrier. Ital J Pediatr 44(Suppl 2):131

    CAS  Google Scholar 

  • Biswas S, Torchilin VP (2013) Dendrimers for siRNA delivery. Pharmaceuticals (Basel) 6(2):161–183

    CAS  Google Scholar 

  • Ciolkowski M, Petersen JF, Ficker M, Janaszewska A, Christensen JB, Klajnert B, Bryszewska M (2012) Surface modification of PAMAM dendrimer improves its biocompatibility. Nanomedicine 8(6):815–817

    CAS  Google Scholar 

  • Dias AP, da Silva SS, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J (2020) Dendrimers in the context of nanomedicine. Int J Pharm 573:118814

    CAS  Google Scholar 

  • Du S, Yu Y, Xu C, Xiong H, Yang S, Yao J (2019) LMWH and its derivatives represent new rational for cancer therapy : construction strategies and combination therapy. Drug Discov Today 24(10):2096–2104

    CAS  Google Scholar 

  • Emanuele AD, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162

    Google Scholar 

  • Fang F, Zou D, Wang W, Yin Y, Yin T, Hao S, Wang B, Wang G, Wang Y (2017) Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater Sci Eng C Mater Biol Appl 76:1316–1327

    CAS  Google Scholar 

  • Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, Rossignol J (2018) Use of polyamidoamine dendrimers in brain diseases. Molecules 23(9):2238

    Google Scholar 

  • Francia V, Yang K, Deville S, Reker-Smit C, Nelissen I, Salvati A (2019) Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13(10):11107–11121

    CAS  Google Scholar 

  • Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Appelhans D, Bryszewska M, Borowiec M (2020) Neurotoxicity of poly(propylene imine) glycodendrimers. Drug Chem Toxicol 13:1–9

    Google Scholar 

  • Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6(4):1–19

    Google Scholar 

  • Gomes MJ, Neves JD, Sarmento B (2014) Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 9:1757–1769

    Google Scholar 

  • Gothwal A, Nakhate KN, Alexander A, Gupta U (2018) Boosted memory and improved brain bio-availability of rivastigmine: targeting effort to brain using covalently tethered lower generation PAMAM dendrimers with lactoferrin. Mol Pharm 15(10):4538–4549

    CAS  Google Scholar 

  • Gothwal A, Kumar H, Nakhate KT, Ajazuddin DA, Borah A, Gupta U (2019) Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer's disease in mice. Bioconjug Chem 30(10):2573–2583

    CAS  Google Scholar 

  • Han S, Zheng H, Lu Y, Sun Y, Huang A, Fei W, Shi X, Xu X, Li J, Li F (2018) A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer. J Drug Target 26(1):86–94

    CAS  Google Scholar 

  • Harilal S, Jose J, Parambi DGT, Kumar R, Unnikrishnan MK, Uddin MS, Mathew GE, Pratap R, Marathakam A, Mathew B (2020) Revisiting the blood–brain barrier: a hard nut to crack in the transportation of drug molecules. Review Brain Res Bull 160:121–140

    CAS  Google Scholar 

  • Hu G, Zhang H, Zhang L, Ruan S, He Q, Gao H (2015) Integrin-mediated active tumour targeting and tumour microenvironment response dendrimer–gelatin nanoparticles for drug delivery and tumour treatment. Int J Pharm 496:1057–1068

    CAS  Google Scholar 

  • Jain K (2017) 7 - Dendrimers: smart nanoengineered polymers for bioinspired applications in drug delivery. In “Biopolymer-based composites”, Jana S, Maiti S, Jana S (Eds) Woodhead Publishing 169-220.

  • Jain K (2019) Nano-hybrids of dendrimers and carbon nanotubes: a benefaction or forfeit in drug delivery? Nanosci Nanotechnol-Asia 9(1):21–29

    CAS  Google Scholar 

  • Jain K, Jain NK (2014) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanosci Nanotechnol 14(7):5075–5087

    CAS  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity : let’s meet the challenge. Int J Pharm 394(1–2):122–142

    CAS  Google Scholar 

  • Jain A, Jain K, Mehra NK, Jain NK (2013) Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J Nanopart Res 15(2003):1–18

    Google Scholar 

  • Jain K, Gupta U, Jain NK (2014) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87(3):500–509

    CAS  Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015a) Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine 11(3):705–713

    CAS  Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015b) Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob Agents Chemother 59(5):2479–2487

    CAS  Google Scholar 

  • Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B (2019) Cytotoxicity of dendrimers. Biomolecules 9(8):330

    CAS  Google Scholar 

  • Jiang D, Lee H, Pardridge WM (2020) Plasmid DNA gene therapy of the Niemann–Pick C1 mouse with transferrin receptor-targeted Trojan horse liposomes. Sci Rep 10(1):13334

    CAS  Google Scholar 

  • Joshi K, Chandra A, Jain K, Talegaonkar S (2019) Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble. Pharm Nanotechnol 7(4):259–278

    CAS  Google Scholar 

  • Karakoçak BB, Laradji A, Primeau T, Berezin MY, Li S, Ravi N (2020) Hyaluronan-conjugated carbon quantum dots for bioimaging use. ACS Appl Mater Interfaces 13:277–286. https://doi.org/10.1021/acsami.0c20088

    Article  CAS  Google Scholar 

  • Karim R, Palazzo C, Evrard B, Piel G (2016) Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release 227:23–37

    CAS  Google Scholar 

  • Kaul M, Alhajala H, Chitambar CR, Chauhan A (2020) Dendrimer–didox nanocomplex for enhanced anticancer activity. J Nanopart Res 22(4)

  • Kaur A, Jain K, Mehra NK, Jain NK (2015) Dendrimer internalization: a systematic review. J Colloid Sci Biotech 4(2):99–109

    CAS  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles : properties, applications and toxicities. Arab J Chem 12(7):908–931

    Google Scholar 

  • Koehn LM (2020) ABC Efflux Transporters at blood–central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 15(7):1235–1242

    Google Scholar 

  • Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao X, Chen Z, Bao Y, Yuan F, Zhou S, Tan H, Li Y, Li X, Fan L, Zhu J, Chen AT, Liu F, Zhou Y, Li M, Zhai X (2020a) Zhou J (2020) Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 4(7):704–716

    CAS  Google Scholar 

  • Li J, Chen L, Xu X, Fan Y, Xue X, Shen M (2020b) Shi X (2020) Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small. 16(49):e2005661

    Google Scholar 

  • Liaw K, Zhang F, Mangraviti A, Kannan S, Tyler B, Kannan RM (2020) Dendrimer size effects on the selective brain tumour targeting in orthotopic tumour models upon systemic administration. Bioeng Transl Med 5(2):e10160

    CAS  Google Scholar 

  • Lu Y, Han S, Zheng H, Ma R, Ping Y, Zou J, Tang H, Zhang Y, Xu X, Li F (2018) A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int J Nanomedicine 13:5937–5952

    CAS  Google Scholar 

  • Lungu CN, Füstös ME, Grudzinski IP, Olteanu G, Putz MV (2020) Protein interaction with dendrimer monolayers: energy and surface topology. Symmetry 12(641):1–16

    Google Scholar 

  • Lv W, Xu J, Wang X, Li X, Xu Q, Xin H (2018) Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 12(6):5417–5426

    CAS  Google Scholar 

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug–dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150

    Google Scholar 

  • Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ (2019) Blood–brain barrier permeability and physical exercise. J Neuroinflammation 16(1):1–16

    Google Scholar 

  • Mariyam M, Ghosal K, Thomas S, Kalarikkal N, Latha MS (2018) Dendrimers: general aspects, applications and structural exploitations as prodrug/drug-delivery. Mini-Rev Med Chem 18(5):439–457

    CAS  Google Scholar 

  • Mayilsamy K, Markoutsa E, Das M, Chopade P, Puro D, Kumar P, Gulick D, Willing AE, Mohapatra SS, Mohapatra S (2020) Treatment with shCCL20-CCR6 nanodendriplexes and human mesenchymal stem cell therapy improves pathology in mice with repeated traumatic brain injury. Nanomedicine 29:102247

    CAS  Google Scholar 

  • Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hanurry EY, Chou HY, Lai JY, Tsai HC, Yang JM, Chang YH (2020) Bioinspired composite, pH-responsive sodium deoxycholate hydrogel and generation 4.5 poly(amidoamine) dendrimer improves cancer treatment efficacy via doxorubicin and resveratrol co-delivery. Pharmaceutics 12(11):1069

    CAS  Google Scholar 

  • Moon H, Lee C, Lee W, Kim J, Chae H (2019) Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31(34):1–14

    Google Scholar 

  • Myc A, Kukowska-Latallo J, Cao P, Swanson B, Battista J, Dunham T, Baker JR Jr (2010) Targeting the efficacy of a dendrimer-based nanotherapeutic in heterogeneous xenograft tumours in vivo. Anti-Cancer Drugs 21(2):186–192

    CAS  Google Scholar 

  • Naha PC, Mukherjee SP, Byrne HJ (2018) Toxicology of engineered nanoparticles: focus on poly(amidoamine) dendrimers. Int J Environ Res Public Health 15(2):338

    Google Scholar 

  • Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Zaldívar-Lelo de Larrea G, Sosa-Ferreyra CF, Mercado-Curiel RF (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014(507273):1–19

    Google Scholar 

  • Ortiz N, Vásquez PA, Vidal F, Díaz CF, Guzmán JL, Jiménez VA, Alderete JB (2020) Polyamidoamine-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. Nanomedicine (London) 15(28):2771–2784

    CAS  Google Scholar 

  • Paris-Robidas S, Brouard D, Emond V, Parent M, Calon F (2016) Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cereb Blood Flow Metab 36(4):731–742

    CAS  Google Scholar 

  • Patel RJ, Parikh RH (2020) Intranasal delivery of topiramate nanoemulsion: pharmacodynamic, pharmacokinetic and brain uptake studies. Int J Pharm 585:119486. https://doi.org/10.1016/j.ijpharm.2020.119486

    Article  CAS  Google Scholar 

  • Patel SK, Gajbhiye V, Jain NK (2012) Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J Drug Target 20(10):841–849

    CAS  Google Scholar 

  • Puhl DL, Amato ARD, Gilbert RJ (2019) Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull 150:216–230

    CAS  Google Scholar 

  • Qiao L, Sun T, Zheng X, Zheng M, Xie Z (2018) Materials Science & Engineering C Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumour cells. Mater Sci Eng C Mater Biol Appl 85:1–6

    CAS  Google Scholar 

  • Razzino CA, Serafín V, Gamella M, Pedrero M, Montero-Calle A, Barderas R, Calero M, Lobo AO, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2020) An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens Bioelectron 163:112238

    CAS  Google Scholar 

  • Ren Y, Kang CS, Yuan XB, Zhou X, Xu P, Han L, Wang GX, Jia Z, Zhong Y, Yu S, Sheng J, Pu PY (2012) Co-delivery of as-MiR-21 and 5-FU by poly (amidoamine-) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21(3):303–314

    Google Scholar 

  • Ross C, Taylor M, Fullwood N, Allsop D (2018) Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 13:8507–8522

    CAS  Google Scholar 

  • Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers : implications for oral drug delivery. Adv Drug Deliv Rev 64(6):571–588

    CAS  Google Scholar 

  • Serafín V, Razzino CA, Gamella M, Pedrero M, Povedano E, Montero-Calle A, Barderas R, Calero M, Lobo AO, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2021) Disposable immunoplatforms for the simultaneous determination of biomarkers for neurodegenerative disorders using poly(amidoamine) dendrimer/gold nanoparticle nanocomposite. Anal Bioanal Chem 413(3):799–811

    Google Scholar 

  • Sharma A, Porterfield JE, Smith E, Sharma R, Kannan S, Kannan RM (2018) Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J Control Release 283:175–189

    CAS  Google Scholar 

  • Sharma A, Liaw K, Sharma R, Thomas AG, Slusher BS, Kannan S, Kannan RM (2020a) Targeting mitochondria in tumour-associated macrophages using a dendrimer conjugated TSPO ligand stimulates anti-tumour signaling in glioblastoma. Biomacromolecules. 21:3909–3922. https://doi.org/10.1021/acs.biomac.0c01033

    Article  CAS  Google Scholar 

  • Sharma R, Kambhampati SP, Zhang Z, Sharma A, Chen S, Duh EI, Kannan S, Tso MOM, Kannan RM (2020b) Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. J Control Release 323:361–375

    CAS  Google Scholar 

  • Shcharbin D, Ionov M, Abashkin V, Loznikova S, Dzmitruk V, Shcharbina N, Matusevich L, Milowska K, Gałęcki K, Wysocki S, Bryszewska M (2015) Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids Surf B: Biointerfaces 134:377–383

    CAS  Google Scholar 

  • Sherje AP, Jadhav M, Dravyakar BR, Kadam D (2018) Dendrimers : a versatile nanocarrier for drug delivery and targeting. Int J Pharm 548(1):707–720

    CAS  Google Scholar 

  • Shobo A, Pamreddy A, Kruger HG, Makatini MM, Naicker T, Govender T, Baijnath S (2018) Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion. Nanomedicine (London) 13:997–1008

    CAS  Google Scholar 

  • Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278(45):44826–44831

    CAS  Google Scholar 

  • Soni N, Jain K, Gupta U, Jain NK (2015) Controlled delivery of gemcitabine hydrochloride using mannosylated poly(propyleneimine) dendrimers. J Nanopart Res 17(458):1–17

    Google Scholar 

  • Strašák T, Malý J, Wróbel D, Malý M, Herma R, Čermák J, Müllerová M, Štastnáa LC, Cuřínováa P (2017) Phosphonium carbosilane dendrimers for biomedical applications—synthesis, characterization and cytotoxicity evaluation. RSC Adv 7:18724–18744

    Google Scholar 

  • Taharabaru T, Yokoyama R, Higashi T, Mohammed AFA, Inoue M, Maeda Y, Niidome T, Onodera R, Motoyama K (2020) Genome editing in a wide area of the brain using dendrimer-based ternary polyplexes of Cas9 ribonucleoprotein. ACS Appl Mater Interfaces 12(19):21386–21397

    CAS  Google Scholar 

  • Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J (2020) Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J Control Release 2020:S0168-3659(20)30747-1

    Google Scholar 

  • Vashist A, Atluri V, Raymond A, Kaushik A, Parira T, Huang Z, Durygin A, Tomitaka A, Nikkhah-Moshaie R, Vashist A, Agudelo M, Chand HS, Saytashev I, Ramella-Roman JC, Nair M (2020) Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Front Bioeng Biotechnol 8:315

    Google Scholar 

  • Warren G, Makarov E, Lu Y, Senanayake T, Rivera K, Gorantla S, Poluektova LY, Vinogradov SV (2015) Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors. J NeuroImmune Pharmacol 10(1):88–101

    CAS  Google Scholar 

  • Xie R, Dong L, Du Y, Zhu Y, Hua R, Zhang C, Chen X (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. PNAS 113(19):5173–5178

    CAS  Google Scholar 

  • Xu L, Zhang H, Wu Y (2014) Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 5(1):2–13

    CAS  Google Scholar 

  • Xu J, Wang X, Yin H, Cao X, Hu Q, Lv W, Xu Q, Gu Z, Xin H (2019) Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 13(8):8577–8588

    CAS  Google Scholar 

  • Xu D, Lu YR, Kou N, Hu MJ, Wang QS, Cui YL (2020) Intranasal delivery of icariin via a nanogel–thermoresponsive hydrogel compound system to improve its antidepressant-like activity. Int J Pharm 586:119550

    CAS  Google Scholar 

  • Zhang F, Mastorakos P, Mishra MK, Mangraviti A, Hwang L, Zhou J, Hanes J, Brem H, Olivi A, Tyler B, Kannan RM (2015) Uniform brain tumour distribution and tumour associated macrophage targeting of systemically administered dendrimers. Biomaterials 52:507–516

    CAS  Google Scholar 

  • Zhou Z, Wang Y, Yan Y, Zhang Q, Cheng Y (2016) Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumour ablation. ACS Nano 10(4):4863–4872

    CAS  Google Scholar 

  • Zhu Y, Liu C, Pang Z (2019) Dendrimer-based drug delivery systems for brain targeting. Biomolecues 9(12):1–29

    Google Scholar 

Download references

Acknowledgement

Dr. Keerti Jain is grateful to Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilisers, Government of India for extending the facilities to write this manuscript. The NIPER-R communication number for this manuscript is NIPER-R/Communication/164. We (Dr. Keerti Jain and Dr. Mukesh Nandave) acknowledge Indian Council of Medical Research (ICMR), New Delhi for the financial support for ICMR Extramural Research Project (ID: 2020-4686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerti Jain.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauro, R., Nandave, M., Jain, V.K. et al. Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanopart Res 23, 76 (2021). https://doi.org/10.1007/s11051-021-05175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05175-8

Keywords

Navigation