Skip to main content
Log in

Optimization of blood handling for plasma extracellular vesicle isolation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are emerging targets for biomarker discovery. However, suitable clinical collection and storage methods for blood plasma-derived EVs have not been fully described. We investigated the long- and short-term effects of temperature and time on the plasma-derived EV concentration, size, protein, and RNA content. EVs isolated from freshly collected human blood stored for various periods of time at either room temperature (RT) or 4°C were analyzed for concentration, size, and protein content. In addition, EVs isolated from plasma stored at −80°C were compared to frozen EV pellets. We found that the number, size, protein, and RNA content of EVs were similar between blood samples stored at RT for 24h compared to samples processed shortly after collection or stored at 4°C vs. −80°C. It is therefore feasible to isolate and analyze comparable, stable EVs from blood plasma stored for varying periods of time and at various temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N, Sanati-Nezhad A (2020) Publication trends in exosomes nanoparticles for cancer detection. Int J Nanomedicine 15:4453–4470. https://doi.org/10.2147/IJN.S247210

    Article  Google Scholar 

  • Anfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs - an update. Nat Rev Clin Oncol 15(9):541–563. https://doi.org/10.1038/s41571-018-0035-x

    Article  Google Scholar 

  • Arenaccio C, Federico M (2017) The multifaceted functions of exosomes in health and disease: an overview. Adv Exp Med Biol 998:3–19. https://doi.org/10.1007/978-981-10-4397-0_1

    Article  CAS  Google Scholar 

  • Baek R, Sondergaard EK, Varming K, Jorgensen MM (2016) The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 438:11–20. https://doi.org/10.1016/j.jim.2016.08.007

    Article  CAS  Google Scholar 

  • Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, Nagy G, Mager I, Wood MJ, El Andaloussi S, Palinkas Z, Kumar V, Nagy P, Kittel A, Buzas EI, Ferdinandy P, Giricz Z (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10(12):e0145686. https://doi.org/10.1371/journal.pone.0145686

    Article  CAS  Google Scholar 

  • Barilani M, Peli V, Cherubini A, Dossena M, Dolo V, Lazzari L (2019) NG2 as an identity and quality marker of mesenchymal stem cell extracellular vesicles. Cells 8(12). https://doi.org/10.3390/cells8121524

  • Bravo V, Rosero S, Ricordi C, Pastori RL (2007) Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun 353(4):1052–1055. https://doi.org/10.1016/j.bbrc.2006.12.135

    Article  CAS  Google Scholar 

  • Cabel L, Proudhon C, Gortais H, Loirat D, Coussy F, Pierga JY, Bidard FC (2017) Circulating tumor cells: clinical validity and utility. Int J Clin Oncol 22(3):421–430. https://doi.org/10.1007/s10147-017-1105-2

    Article  Google Scholar 

  • Chandler WL (2013) Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood Coagul Fibrinolysis 24(2):125–132. https://doi.org/10.1097/MBC.0b013e32835a0824

    Article  Google Scholar 

  • Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, Goodman MT, Tait JF, Tewari M, Pritchard CC (2013) Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8(6):e64795. https://doi.org/10.1371/journal.pone.0064795

    Article  CAS  Google Scholar 

  • Clayton A, Boilard E, Buzas EI, Cheng L, Falcon-Perez JM, Gardiner C, Gustafson D, Gualerzi A, Hendrix A, Hoffman A, Jones J, Lasser C, Lawson C, Lenassi M, Nazarenko I, O’Driscoll L, Pink R, Siljander PR, Soekmadji C, Wauben M, Welsh JA, Witwer K, Zheng L, Nieuwland R (2019) Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J Extracell Vesicles 8(1):1647027. https://doi.org/10.1080/20013078.2019.1647027

    Article  Google Scholar 

  • Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930. https://doi.org/10.1126/science.aar3247

    Article  CAS  Google Scholar 

  • de Necochea-Campion R, Gonda A, Kabagwira J, Mirshahidi S, Cao H, Reeves ME, Wall NR (2018) A practical approach to extracellular vesicle characterization among similar biological samples. Biomed Phys Eng Express 4:1–8

    Article  Google Scholar 

  • Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7). https://doi.org/10.3390/cells8070727

  • Fendl B, Weiss R, Fischer MB, Spittler A, Weber V (2016) Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem Biophys Res Commun 478(1):168–173. https://doi.org/10.1016/j.bbrc.2016.07.073

    Article  CAS  Google Scholar 

  • Ferguson Bennit HR, Gonda A, McMullen JRW, Kabagwira J, Wall NR (2019) Peripheral blood cell interactions of cancer-derived exosomes affect immune function. Cancer Microenviron 12(1):29–35. https://doi.org/10.1007/s12307-018-0209-1

    Article  CAS  Google Scholar 

  • Gonda A, Kabagwira J, Senthil GN, Ferguson Bennit HR, Neidigh JW, Khan S, Wall NR (2018) Exosomal survivin facilitates vesicle internalization. Oncotarget 9(79):34919–34934. https://doi.org/10.18632/oncotarget.26182

    Article  Google Scholar 

  • Gonda A, Kabagwira J, Senthil GN, Wall NR (2019) Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res 17(2):337–347. https://doi.org/10.1158/1541-7786.MCR-18-0891

    Article  CAS  Google Scholar 

  • Huang T, Deng CX (2019) Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci 15(1):1–11. https://doi.org/10.7150/ijbs.27796

    Article  CAS  Google Scholar 

  • Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16(1):145. https://doi.org/10.1186/s12943-017-0706-8

    Article  CAS  Google Scholar 

  • Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. https://doi.org/10.3402/jev.v3.26913

    Article  Google Scholar 

  • Manne U, Jadhav T, Putcha BK, Samuel T, Soni S, Shanmugam C, Suswam EA (2016) Molecular biomarkers of colorectal cancer and cancer disparities: current status and perspective. Curr Colorectal Cancer Rep 12(6):332–344. https://doi.org/10.1007/s11888-016-0338-1

    Article  Google Scholar 

  • Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Sun H, Culbertson CT, Bossmann SH, Motamedi M, Brasier AR (2017) Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 6(1):1359478. https://doi.org/10.1080/20013078.2017.1359478

    Article  CAS  Google Scholar 

  • Po JW, Roohullah A, Lynch D, DeFazio A, Harrison M, Harnett PR, Kennedy C, de Souza P, Becker TM (2018) Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ Biomark 7:1849454418782617. https://doi.org/10.1177/1849454418782617

    Article  CAS  Google Scholar 

  • Rossi G, Ignatiadis M (2019) Promises and pitfalls of using liquid biopsy for precision medicine. Cancer Res 79(11):2798–2804. https://doi.org/10.1158/0008-5472.CAN-18-3402

    Article  CAS  Google Scholar 

  • Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17(1):147. https://doi.org/10.1186/s12943-018-0897-7

    Article  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 4:142. https://doi.org/10.3389/fgene.2013.00142

    Article  CAS  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3(Unit 3):22. https://doi.org/10.1002/0471143030.cb0322s30

    Article  Google Scholar 

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrom K, El Andaloussi S, Elie-Caille C, Erdbrugger U, Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C, Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons K, Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, LK MG, MJ MV, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Moller A, Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-‘t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E, Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M, Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  Google Scholar 

  • Turay D, Khan S, Diaz Osterman CJ, Curtis MP, Khaira B, Neidigh JW, Mirshahidi S, Casiano CA, Wall NR (2016) Proteomic profiling of serum-derived exosomes from ethnically diverse prostate cancer patients. Cancer Investig 34(1):1–11. https://doi.org/10.3109/07357907.2015.1081921

    Article  CAS  Google Scholar 

  • Valenzuela M, Ferguson Bennit H, Gonda A, Diaz Osterman C, Hibma A, Khan S, Wall N (2015) Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron 8(2):65–73. 1-9. https://doi.org/10.1007/s12307-015-0167-9

    Article  CAS  Google Scholar 

  • Volckmar AL, Sultmann H, Riediger A, Fioretos T, Schirmacher P, Endris V, Stenzinger A, Dietz S (2018) A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications. Genes Chromosom Cancer 57(3):123–139. https://doi.org/10.1002/gcc.22517

    Article  CAS  Google Scholar 

  • Wisgrill L, Lamm C, Hartmann J, Preissing F, Dragosits K, Bee A, Hell L, Thaler J, Ay C, Pabinger I, Berger A, Spittler A (2016) Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A 89(7):663–672. https://doi.org/10.1002/cyto.a.22892

    Article  CAS  Google Scholar 

  • Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Thery C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20360

  • Yamashita T, Takahashi Y, Takakura Y (2018) Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 41(6):835–842. https://doi.org/10.1248/bpb.b18-00133

    Article  CAS  Google Scholar 

  • Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  Google Scholar 

  • Yuana Y, Boing AN, Grootemaat AE, van der Pol E, Hau CM, Cizmar P, Buhr E, Sturk A, Nieuwland R (2015) Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles 4:29260. https://doi.org/10.3402/jev.v4.29260

    Article  CAS  Google Scholar 

  • Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. https://doi.org/10.1093/biosci/biv084

    Article  Google Scholar 

Download references

Funding

This work was supported by Loma Linda University’s Grants to Promote Collaborative and Translational GCAT Research program (NRW, MS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Janvier Kabagwira: conceptualization, methodology, writing original draft. Amber Gonda: conceptualization, methodology, supervision, validation, writing review, and editing. Paul Vallejos: software, analysis of data, writing review, and editing. Blake Babcock: conceptualization, methodology. William Langridge: conceptualization, supervision, writing review, and editing. Maheswari Senthil: conceptualization, supervision, methodology, project administration, funding, writing review, and editing. Nathan Wall: conceptualization, data curation, funding, methodology, project administration, resources, software, supervision, writing original draft, review, and editing. *Authors contributed equally to this manuscript.

Corresponding author

Correspondence to Nathan R. Wall.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have given their consent to publish this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary 1.

Blood storage at 4°C or 37°C does not alter EVs size and concentration over 24 hours. EVs were isolated from blood that was stored at either room temperature (A&C) or ice/ 4°C (B&D) from healthy control patients. The storage duration for the blood was 1, 2, 4 and 24 hours. Size (A&B) and concentration (C&D) of EVs was conducted using a Nanosight NS300 at each time point. Normalized EV protein was also compared (E). Data is representative of multiple replicates (n=5) performed for each sample. Non-significance is indicated by ns. (PNG 421 kb)

High resolution image (TIFF 857 kb)

Supplementary 2.

Blood storage at 4°C or 37°C does not alter EVs RNA yield over 24 hours. EVs were isolated from blood that was stored at either room temperature (A) or ice/ 4°C (B) from healthy control patients. The storage duration for the blood was 1, 2, 4 and 24 hours. Normalized RNA yield was compared with no significant difference observed (C) as a result of temperature at any time point. Data is representative of multiple replicates (n=5) performed for each sample. Non-significance is indicated by ns. (PNG 384 kb)

High resolution image (TIFF 857 kb)

Supplementary 3.

Long-term freezing of EVs does not affect EVs protein markers. Whole blood was collected and spun at 2000 rpm for 10 minutes to obtain plasma which was divided into two parts. One portion was frozen at−80 °C for 16 months and from the other portion EVs were isolated using ExoQuick measured and frozen−80 °C for 16 months. After 16 months, EVs were isolated from frozen plasma. Proteins from each sample were run on 12% SDS PAGE and probed with antibodies to EPCAM, CD81, CD63, and CD9. Data is representative of multiple replicates (n=2) performed for each sample. (PNG 372 kb)

High resolution image (TIFF 857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabagwira, J., Gonda, A., Vallejos, P. et al. Optimization of blood handling for plasma extracellular vesicle isolation. J Nanopart Res 23, 65 (2021). https://doi.org/10.1007/s11051-021-05169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05169-6

Keywords

Navigation