Skip to main content
Log in

Impact of the changes in bacterial outer membrane structure on the anti-bacterial activity of zinc oxide nanoparticles

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Metal and metal oxide nanoparticles (NPs) have been increasingly utilized in many industries to harness their documented antibacterial properties. However, the mechanism(s) of action is still debated in the literature. The aim of this study is to understand how changes in outer membrane charge of a test bacteria Haemophilus influenzae alter the antibacterial activity of ZnO NPs of average sizes of 20 nM and 60 nM. H. influenzae outer membrane charge was altered through use of the wild strain (Rd) and mutant lines H543 and H446. Results indicate that antibacterial effects are both concentration and size dependent, with smaller NPs causing increased antibacterial response. Most critically, antibacterial assays and collected TEM images demonstrate that increasing negative charge on the outer membrane of bacteria decreased the antibacterial activity of the ZnO NPs. Finally, this work demonstrates the possibility of using ZnO NPs to treat H. influenzae infection in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4:345–357

    CAS  Google Scholar 

  • Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine 3:3–9

    Article  Google Scholar 

  • Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF et al (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64

    Article  Google Scholar 

  • Clark S (2013) Evasion of host recognition by phase variation in Haemophilus influenzae. Publicly Accessible Penn Dissertations 623

  • Clark SE, Snow J, Li J, Zola TA, Weiser JN (2012) Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLoS Pathog 8(3):e1002521

    Article  CAS  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed: Nanotechnol Biol Med 12:789–799

    Article  Google Scholar 

  • Fan X (2004) The choline incorporation pathways of Haemophilus influenzae Dissertations available from ProQuest AAI3125813

  • Fan X, Goldfine H, Lysenko E, Weiser JN (2001) The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Molecular Microbiol 41:1029–1036

    Article  CAS  Google Scholar 

  • Fan X, Pericone CD, Lysenko E, Goldfine H, Weiser JN (2003) Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Molecular Microbiol 50:537–548

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Materials Res 52:662–668

    Article  CAS  Google Scholar 

  • Jahnke JP, Cornejo JA, Sumner JJ, Schuler AJ, Atanassov P, Ista LK (2016) Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: the case of Shewanella oneidensis MR-1. Biointerphases 11:011003

    Article  Google Scholar 

  • Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49:11476–11484

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Letters 279:71–76

    Article  CAS  Google Scholar 

  • Kuklinska D, Kilian M (1984) Relative proportions of Haemophilus species in the throat of healthy children and adults. European J Clinical Microbiol 3:249–252

    Article  CAS  Google Scholar 

  • Kumar R, Umar A, Kumar G, Nalwa HS (2017) Antimicrobial properties of ZnO nanomaterials: a review. Ceram Int 43:3940–3961

    Article  CAS  Google Scholar 

  • Lysenko E, Richards JC, Cox AD, Stewart A, Martin A, Kapoor M, Weiser JN (2000) The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to C-reactive protein-mediated killing. Molecular Microbiol 35:234–245

    Article  CAS  Google Scholar 

  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein− nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  CAS  Google Scholar 

  • McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine Nanobiotechnol 1:264–271

    CAS  Google Scholar 

  • Mishra PK, Mishra H, Ekielski A, Talegonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22:1825–1834

    Article  CAS  Google Scholar 

  • Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49:199–206

    Article  CAS  Google Scholar 

  • Nair S, Sasidharan A, Rani VD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials Med 20:235

    Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Materials Sci Technol 24:192–196

    CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  Google Scholar 

  • Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In Nanomedicine in Cancer (pp. 73-124). Pan Stanford

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277

    Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 7:219–242

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, Shah V (2018) Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). The J Antibiotics 72:50–53

    Article  Google Scholar 

  • Wan B, Yan Y, Tang Y, Bai Y, Liu F, Tan W, Huang Q, Feng X (2017) Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles. Chemosphere 176:255–265

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

Download references

Funding

The work was partially funded through National Science Foundation awards numbers CBET No 1748439 and CBET No. 1559792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work is dedicated in the memory of Dr. Fan. She was responsible for co-mentoring the student author in this study and played a significant role in the design of experiments.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surwade, P., Luxton, T., Clar, J. et al. Impact of the changes in bacterial outer membrane structure on the anti-bacterial activity of zinc oxide nanoparticles. J Nanopart Res 22, 43 (2020). https://doi.org/10.1007/s11051-020-4767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-4767-z

Keywords

Navigation