High-moment magnetic nanoparticles

Abstract

In recent years, high-moment magnetic nanoparticles (MNPs) such as FeCo are attracting intense interest for biomedical applications. The synthesized FeCo MNPs have the specific saturation magnetization up to 226 emu/g that is more than three times higher than that of iron oxide MNPs (~ 70–80 emu/g). Core-shell MNPs are also synthesized to enhance the functionality of high-moment MNPs. Shells like SiO2, Au, and Ag are used for these high-moment MNPs to improve biocompatibility. The sputtering-based gas-phase condensation approach to synthesize high-moment MNPs and core-shell nanostructures are reviewed. The applications of these high-moment MNPs such as magnetic hyperthermia, drug delivery, magnetic resonance imaging (MRI), and biosensing are summarized. The heating efficiency of magnetic hyperthermia and drug delivery could be significantly enhanced by using high-moment MNPs. MNPs with different crystallinity and shapes (such as cubic, spherical, triangular, and octahedral shapes) are also summarized due to their potential applications in MRI. High-moment MNPs could also provide more magnetic signals for giant magnetoresistance (GMR)-based biosensors, which are also reviewed. We believe that the high-moment MNPs are promising candidates for many bio-applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abbas M, Islam MN, Rao BP et al (2015) Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures. Mater Lett 139:161–164. https://doi.org/10.1016/j.matlet.2014.10.078

    CAS  Article  Google Scholar 

  2. Bai J, Wang J-P (2005) High-magnetic-moment core-shell-type FeCo–au∕Ag nanoparticles. Appl Phys Lett 87:152502. https://doi.org/10.1063/1.2089171

    CAS  Article  Google Scholar 

  3. Bai J, Xu Y-H, Thomas J, Wang J-P (2007a) (FeCo) 3 Si–SiO x core–shell nanoparticles fabricated in the gas phase. Nanotechnology 18:065701. https://doi.org/10.1088/0957-4484/18/6/065701

    CAS  Article  Google Scholar 

  4. Bai J, Xu Y, Wang J (2007b) Cubic and spherical high-moment FeCo nanoparticles with narrow size distribution. IEEE Trans Magn 43:3340–3342. https://doi.org/10.1109/TMAG.2007.893781

    CAS  Article  Google Scholar 

  5. Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400. https://doi.org/10.1016/j.rpor.2013.09.011

    Article  Google Scholar 

  6. Bárcena C, Sra AK, Gao J (2009) Applications of magnetic nanoparticles in biomedicine. In: Nanoscale magnetic materials and applications. Springer US, Boston, MA, pp 591–626

    Google Scholar 

  7. Bulut F, Rosellen W, Getzlaff M (2009) Structural properties of size-selected FeCo nanoparticles deposited on W(110). Appl Phys A Mater Sci Process 97:185–189. https://doi.org/10.1007/s00339-009-5230-2

    CAS  Article  Google Scholar 

  8. Çelik Ö, Fırat T (2018) Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia. J Magn Magn Mater 456:11–16. https://doi.org/10.1016/j.jmmm.2018.01.090

    CAS  Article  Google Scholar 

  9. Choi J, Gani AW, Bechstein DJB et al (2016) Portable, one-step, and rapid GMR biosensor platform with smartphone interface. Biosens Bioelectron 85:1–7. https://doi.org/10.1016/j.bios.2016.04.046

    CAS  Article  Google Scholar 

  10. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60. https://doi.org/10.1002/ddr.20067

    CAS  Article  Google Scholar 

  11. Du Y, Lai P, Leung C, Pong P (2013) Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 14:18682–18710. https://doi.org/10.3390/ijms140918682

    CAS  Article  Google Scholar 

  12. Feng Y, Liu J, Klein T et al (2017) Localized detection of reversal nucleation generated by high moment magnetic nanoparticles using a large-area magnetic sensor. J Appl Phys 122:123901. https://doi.org/10.1063/1.5001919

    CAS  Article  Google Scholar 

  13. Gao Y (2018) Carbon nano-allotrope/magnetic nanoparticle hybrid nanomaterials as T2 contrast agents for magnetic resonance imaging applications. J Funct Biomater 9:16. https://doi.org/10.3390/jfb9010016

    CAS  Article  Google Scholar 

  14. Granqvist CG (1976) Ultrafine metal particles. J Appl Phys 47:2200. https://doi.org/10.1063/1.322870

    CAS  Article  Google Scholar 

  15. Haberland H, Karrais M, Mall M (1991) A new type of cluster and cluster ion source. Atoms Mol Clust 20:413–415. https://doi.org/10.1007/BF01544025

    CAS  Article  Google Scholar 

  16. Haberland H, Martin K, Martin M, Yonca T (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266–3271. https://doi.org/10.1116/1.577853

    CAS  Article  Google Scholar 

  17. He S, Jing Y, Wang J-P (2013) Direct synthesis of large size ferromagnetic SmCo5 nanoparticles by a gas-phase condensation method. J Appl Phys 113:134310. https://doi.org/10.1063/1.4798475

    CAS  Article  Google Scholar 

  18. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196. https://doi.org/10.1016/j.matdes.2017.03.036

    CAS  Article  Google Scholar 

  19. Hergt R, Hiergeist R, Hilger I et al (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357. https://doi.org/10.1016/j.jmmm.2003.09.001

    CAS  Article  Google Scholar 

  20. Hu M-J, Lu Y, Zhang S, Guo SR, Lin B, Zhang M, Yu SH (2008) High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. J Am Chem Soc 130:11606–11607. https://doi.org/10.1021/ja804467g

    CAS  Article  Google Scholar 

  21. Hütten A, Sudfeld D, Ennen I, Reiss G, Hachmann W, Heinzmann U, Wojczykowski K, Jutzi P, Saikaly W, Thomas G (2004) New magnetic nanoparticles for biotechnology. J Biotechnol 112:47–63. https://doi.org/10.1016/j.jbiotec.2004.04.019

    CAS  Article  Google Scholar 

  22. Ji N, Allard LF, Lara-Curzio E, Wang J-P (2011) N site ordering effect on partially ordered Fe[sub 16]N[sub 2]. Appl Phys Lett 98:092506. https://doi.org/10.1063/1.3560051

    CAS  Article  Google Scholar 

  23. Jian-Ping Wang (2008) FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE 96:1847–1863. https://doi.org/10.1109/JPROC.2008.2004318

    CAS  Article  Google Scholar 

  24. Jing Y, Sohn H, Kline T et al (2009) Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia. J Appl Phys 105:07B305. https://doi.org/10.1063/1.3074136

    CAS  Article  Google Scholar 

  25. Jing Y, He SH, Wang JP (2013) Composition-and phase-controlled high-magnetic-moment Fe 1-xCox nanoparticles for biomedical applications. IEEE Trans Magn 49:197–200. https://doi.org/10.1109/TMAG.2012.2226236

    Article  Google Scholar 

  26. Jing Y, Liu J, Ji W-H, Wang W, He SH, Jiang XZ, Wiedmann T, Wang C, Wang JP (2015) Biocompatible Fe–Si nanoparticles with adjustable self-regulation of temperature for medical applications. ACS Appl Mater Interfaces 7:12649–12654. https://doi.org/10.1021/acsami.5b01680

    CAS  Article  Google Scholar 

  27. Kim TK, Takahashi M (1972) New magnetic material having ultrahigh magnetic moment. Appl Phys Lett 20:492–494. https://doi.org/10.1063/1.1654030

    CAS  Article  Google Scholar 

  28. Klein T, Wang Y, Tu L et al (2014) Comparative analysis of several GMR strip sensor configurations for biological applications. Sensors Actuators A Phys 216:349–354. https://doi.org/10.1016/j.sna.2014.05.033

    CAS  Article  Google Scholar 

  29. Kline TL, Xu YH, Jing Y, Wang JP (2009) Biocompatible high-moment FeCo-au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321:1525–1528. https://doi.org/10.1016/j.jmmm.2009.02.079

    CAS  Article  Google Scholar 

  30. Krishna VD, Wu K, Perez AM, Wang J-P (2016) Giant Magnetoresistance-based biosensor for detection of influenza a virus. Front Microbiol 7:1–8. https://doi.org/10.3389/fmicb.2016.00400

    CAS  Article  Google Scholar 

  31. Krishna VD, Wu K, Su D et al (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54. https://doi.org/10.1016/j.fm.2018.01.025

    CAS  Article  Google Scholar 

  32. Lacroix L-M, Malaki RB, Carrey J et al (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105:023911. https://doi.org/10.1063/1.3068195

    CAS  Article  Google Scholar 

  33. Li Y, Jing Y, Yao X et al (2009) Biomarkers identification and detection based on GMR sensor and sub 13 nm magnetic nanoparticles. In: 2009 annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 5432–5435

  34. Li Y, Srinivasan B, Jing Y, Yao X, Hugger MA, Wang JP, Xing C (2010) Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc 132:4388–4392. https://doi.org/10.1021/ja910406a

    CAS  Article  Google Scholar 

  35. Li S, Huang Y, Zhang N et al (2019) Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J Alloys Compd 774:532–539. https://doi.org/10.1016/j.jallcom.2018.09.349

    CAS  Article  Google Scholar 

  36. Liu J, Wu K, Wang J-P (2016) Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure. AIP Adv 6:056126. https://doi.org/10.1063/1.4945042

    CAS  Article  Google Scholar 

  37. Liu J, Schliep K, He SH et al (2018) Iron nanoparticles with tunable tetragonal structure and magnetic properties. Phys Rev Mater 2:054415. https://doi.org/10.1103/PhysRevMaterials.2.054415

    CAS  Article  Google Scholar 

  38. Liu J, He S, Wang J-P (2019a to be submitted) A gas-condensation system with a hollow cathode for synthesizing magnetic nanoparticles with high yield

  39. Liu J, Guo G, Zhang F et al (2019b) Synthesis of α″-Fe 16 N 2 ribbons with a porous structure. Nanoscale Adv 1:1337–1342. https://doi.org/10.1039/C9NA00008A

    CAS  Article  Google Scholar 

  40. Liu J, Guo G, Zhang X et al (2020a) Synthesis of α″-Fe16N2 foils with an ultralow temperature coefficient of coercivity for rare-earth-free magnets. Acta Mater 184:143–150. https://doi.org/10.1016/j.actamat.2019.11.052

    CAS  Article  Google Scholar 

  41. Liu J, Zhang D, Wu K et al (2020b) Magnetic field enhanced coercivity of Fe nanoparticles embedded in antiferromagnetic MnN films. J Phys D Appl Phys 53:035003. https://doi.org/10.1088/1361-6463/ab4c58

    CAS  Article  Google Scholar 

  42. Ong PL, Mahmood S, Zhang T et al (2008) Synthesis of FeCo nanoparticles by pulsed laser deposition in a diffusion cloud chamber. Appl Surf Sci 254:1909–1914. https://doi.org/10.1016/j.apsusc.2007.07.186

    CAS  Article  Google Scholar 

  43. Patra CR, Jing Y, Xu YH, Bhattacharya R, Mukhopadhyay D, Glockner JF, Wang JP, Mukherjee P (2010) A core-shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnol 1:13–18. https://doi.org/10.1007/s12645-010-0002-4

    CAS  Article  Google Scholar 

  44. Qiu J-M, Wang J-P (2006) Monodispersed and highly ordered L1[sub 0] FePt nanoparticles prepared in the gas phase. Appl Phys Lett 88:192505. https://doi.org/10.1063/1.2202130

    CAS  Article  Google Scholar 

  45. Qiu J-M, Wang J-P (2007) Tuning the crystal structure and magnetic properties of FePt nanomagnets. Adv Mater 19:1703–1706. https://doi.org/10.1002/adma.200602374

    CAS  Article  Google Scholar 

  46. Qiu J-M, Judy JH, Weller D, Wang J-P (2005) Toward the direct deposition of L10 FePt nanoparticles. J Appl Phys 97:10J319. https://doi.org/10.1063/1.1855211

    CAS  Article  Google Scholar 

  47. Reiss G, Hütten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726. https://doi.org/10.1038/nmat1494

    CAS  Article  Google Scholar 

  48. Sattler K, Mühlbach J, Recknagel E (1980) Generation of metal clusters containing from 2 to 500 atoms. Phys Rev Lett 45:821–824. https://doi.org/10.1103/PhysRevLett.45.821

    CAS  Article  Google Scholar 

  49. Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell M, Nishimura DG, Dai H (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971–976. https://doi.org/10.1038/nmat1775

    CAS  Article  Google Scholar 

  50. Serkova NJ (2017) Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation. Front Immunol 8:590. https://doi.org/10.3389/fimmu.2017.00590

    CAS  Article  Google Scholar 

  51. Sherlock SP, Dai H (2011) Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res 4:1248–1260. https://doi.org/10.1007/s12274-011-0176-z

    CAS  Article  Google Scholar 

  52. Sherlock SP, Tabakman SM, Xie L, Dai H (2011) Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 5:1505–1512. https://doi.org/10.1021/nn103415x

    CAS  Article  Google Scholar 

  53. Srinivasan B, Li Y, Jing Y et al (2009a) A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem 121:2802–2805. https://doi.org/10.1002/ange.200806266

    Article  Google Scholar 

  54. Srinivasan B, Li Y, Jing Y et al (2009b) A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed 48:2764–2767. https://doi.org/10.1002/anie.200806266

    CAS  Article  Google Scholar 

  55. Srinivasan B, Li Y, Jing Y, Xing C, Slaton J, Wang JP (2011) A three-layer competition-based giant magnetoresistive assay for direct quantification of endoglin from human urine. Anal Chem 83:2996–3002. https://doi.org/10.1021/ac2005229

    CAS  Article  Google Scholar 

  56. Su et al (2020), Advances in Magnetoresistive Biosensors, Micromachines, 1:34. https://doi.org/10.3390/mi11010034

  57. Su D, Wu K, Krishna VD et al (2019a) Detection of influenza a virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system. Front Microbiol 10:1–10. https://doi.org/10.3389/fmicb.2019.01077

    Article  Google Scholar 

  58. Su D, Wu K, Wang J-P (2019b) Large-area GMR bio-sensors based on reverse nucleation switching mechanism. J Magn Magn Mater 473:484–489. https://doi.org/10.1016/j.jmmm.2018.10.112

    CAS  Article  Google Scholar 

  59. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Colloid Interface 28:65–108

    CAS  Article  Google Scholar 

  60. Sugita Y, Mitsuoka K, Komuro M et al (1991) Giant magnetic moment and other magnetic properties of epitaxially grown Fe16N2 single-crystal films (invited). 70:5977–5982

  61. Takahashi M, Mohan P, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T, Maenosono S (2015) Ag/FeCo/Ag Core/Shell/Shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 31:2228–2236. https://doi.org/10.1021/la5046805

    CAS  Article  Google Scholar 

  62. Wang J-P (2019) Environment-friendly bulk Fe16N2 permanent magnet: review and prospective. J Magn Magn Mater 165962. https://doi.org/10.1016/j.jmmm.2019.165962

  63. Wang J-P, Qiu J-M, Taton TA, Kim B-S (2006) Direct preparation of highly ordered$rm L10 phase FePt nanoparticles and their shape-assisted assembly. IEEE Trans Magn 42:3042–3047. https://doi.org/10.1109/TMAG.2006.880150

    CAS  Article  Google Scholar 

  64. Wang JP, Ji N, Liu X, et al (2012) Fabrication of Fe16N2films by sputtering process and experimental investigation of origin of giant saturation magnetization in Fe16N2. In: IEEE Transactions on Magnetics. pp 1710–1717

  65. Wang Y, Zhang W, Luo C et al (2016) Superparamagnetic FeCo@SnO 2 nanoparticles on graphene-polyaniline: synthesis and enhanced electromagnetic wave absorption properties. Ceram Int 42:12496–12502. https://doi.org/10.1016/j.ceramint.2016.05.038

    CAS  Article  Google Scholar 

  66. Wang Y, Wu X, Zhang W et al (2017) Synthesis of ferromagnetic sandwich FeCo@graphene@PPy and enhanced electromagnetic wave absorption properties. J Magn Magn Mater 443:358–365. https://doi.org/10.1016/j.jmmm.2017.07.063

    CAS  Article  Google Scholar 

  67. Wei X-W, Zhu G-X, Liu Y-J et al (2008) Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem Mater 20:6248–6253. https://doi.org/10.1021/cm800518x

    CAS  Article  Google Scholar 

  68. Wu K, Wang J-P (2017) Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields. AIP Adv 7:056327. https://doi.org/10.1063/1.4978458

    CAS  Article  Google Scholar 

  69. Wu XL, Zhong W, Jiang HY et al (2004) Magnetic properties and thermal stability of γ′-Fe4N nanoparticles prepared by a combined method of reduction and nitriding. J Magn Magn Mater 281:77–81. https://doi.org/10.1016/j.jmmm.2004.03.043

    CAS  Article  Google Scholar 

  70. Wu K, Klein T, Krishna VD et al (2017) Portable GMR handheld platform for the detection of influenza a virus. ACS Sensors 2:1594–1601. https://doi.org/10.1021/acssensors.7b00432

    CAS  Article  Google Scholar 

  71. Wu K, Liu J, Saha R et al (2019a) Irregularly shaped γ’-Fe4N nanoparticles for hyperthermia treatment and T2 contrast-enhanced magnetic resonance imaging with minimum dose

  72. Wu K, Su D, Liu J, Saha R, Wang JP (2019b) Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 30:502003. https://doi.org/10.1088/1361-6528/ab4241

    CAS  Article  Google Scholar 

  73. Wu K, Su D, Saha R et al (2019c) Magnetic particle spectroscopy-based bioassays: methods, applications, advances, and future opportunities. J Phys D Appl Phys 52:173001. https://doi.org/10.1088/1361-6463/ab03c0

    CAS  Article  Google Scholar 

  74. Xu Y (2007) Direct synthesis of multifunctional heterostructured magnetic nanoparticles in gas phase

  75. Xu Y, Wang J (2007) FeCo–au core-shell nanocrystals. Appl Phys Lett 91:233107. https://doi.org/10.1063/1.2823574

    CAS  Article  Google Scholar 

  76. Xu Y-H, Wang J-P (2008) Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Adv Mater 20:994–999. https://doi.org/10.1002/adma.200602895

    CAS  Article  Google Scholar 

  77. Xu YH, Bai J, Wang J-P (2007) High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J Magn Magn Mater 311:131–134. https://doi.org/10.1016/j.jmmm.2006.11.174

    CAS  Article  Google Scholar 

  78. Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S (2009) FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc 131:15346–15351

    CAS  Article  Google Scholar 

  79. Yamamuro S, Sumiyama K, Sakurai M, Suzuki K (1998) Cr cluster deposition by plasma—gas-condensation method. Supramol Sci 5:239–245. https://doi.org/10.1016/S0968-5677(98)00014-5

    CAS  Article  Google Scholar 

  80. Yamamuro S, Sumiyama K, Suzuki K (1999) Monodispersed Cr cluster formation by plasma-gas-condensation. J Appl Phys 85:483–489. https://doi.org/10.1063/1.369476

    CAS  Article  Google Scholar 

  81. Yang F, Chen H, Liu D et al (2017) The microstructure and magnetic properties of FeCo@SiO2 core-shell nanoparticles synthesized by using a solution method. J Alloys Compd 728:1153–1156. https://doi.org/10.1016/j.jallcom.2017.09.126

    CAS  Article  Google Scholar 

  82. Yu L, Liu J, Wu K, Klein T, Jiang Y, Wang JP (2014) Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA. Sci Rep 4:7216. https://doi.org/10.1038/srep07216

    CAS  Article  Google Scholar 

  83. Zeisberger M, Dutz S, Müller R et al (2007) Metallic cobalt nanoparticles for heating applications. J Magn Magn Mater 311:224–227. https://doi.org/10.1016/j.jmmm.2006.11.178

    CAS  Article  Google Scholar 

  84. Zhang L, Gu F, Chan J, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769. https://doi.org/10.1038/sj.clpt.6100400

    CAS  Article  Google Scholar 

Download references

Funding

This study was financially supported by the Institute of Engineering in Medicine of the University of Minnesota through FY18 IEM Seed Grant Funding Program, the National Science Foundation MRSEC facility program, the Distinguished McKnight University Professorship, the Centennial Chair Professorship, and the Robert F Hartmann Endowed Chair from the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection Nanoparticles in Biotechnology and Medicine

Xiaoshan (Sean) Zhu, University of Nevada, Guest Editor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Su, D., Wu, K. et al. High-moment magnetic nanoparticles. J Nanopart Res 22, 66 (2020). https://doi.org/10.1007/s11051-020-4758-0

Download citation

Keywords

  • High-moment
  • Magnetic nanoparticles
  • Gas-phase condensation
  • FeCo
  • Bio-application
  • Biocompatible nanoshells