Skip to main content
Log in

Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Over the past few decades, detonation nanodiamonds (NDs) have gained increased attention due to their unique physicochemical properties. Various methods for preparation of ND suspensions have been introduced. This paper presents thermally annealed nanodiamonds dispersed via sonication and separated by centrifugation in deionized water and dimethylformamide in five weight concentrations ranging from 0.05 to 1 wt%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were applied to study the thermal behavior of NDs. Crystallographic properties of air-annealed and dispersed NDs were examined by means of X-ray diffraction (XRD). Nanodiamond dispersions were analyzed by static light scattering (SLS), dynamic light scattering (DLS), ultra-small- and small-angle X-ray scattering (USAXS/SAXS), and high-resolution transmission electron microscopy (HRTEM). SLS and DLS give similar results of ND aggregates mean size between ~ 61 and 73 nm, regardless of solvent type and nanoparticle concentration. For dispersions with increasing concentrations of NDs, neither increased aggregate size nor different kinetics of separation during sonication and centrifugation were observed. USAXS/SAXS provided the aggregates size (2Rg) in the range from 57 to 65 nm and size of primary particles from 5.4 to 5.8 nm. HRTEM also showed presence of larger aggregates with tens of nanometers in size in both water and DMF dispersions, and size of primary particles ranging from 5.5 to 6 nm in very good agreement with SAXS.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Funding

The result was developed within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, cofunded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I.

This work was supported by the European Regional Development Fund (ERDF), project CEDAMNF, reg. no. CZ.02.1.01/0.0/0.0/15_003/0000358.

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Kovářík.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovářík, T., Bělský, P., Rieger, D. et al. Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. J Nanopart Res 22, 34 (2020). https://doi.org/10.1007/s11051-020-4755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-4755-3

Keywords

Navigation