Skip to main content
Log in

Spontaneous epoxidation of styrene catalyzed by flower-like NiO nanoparticles under ambient conditions

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Flower-like NiO microspheres with an average size of ⁓ 3 μm and nanoflakes size ⁓ 10–100 nm were synthesized by surfactant-assisted chemical precipitation method, using Ni(CH3CO2)2·4 H2O as a nickel source, diethanolamine as a complexing agent, and cetyltrimethylammonium bromide as a surfactant. The obtain material was characterized by SEM, EDX, HR-TEM, XRD, and TGA. The obtained results confirmed the formation of highly ordered flower-like NiO nanoparticles. The catalytic activity of the obtained material was evaluated in the epoxidation reaction of styrene under ambient conditions, using meta-chloroperoxybenzoic acid (m-CPBA) as an oxidant. The obtained results revealed an immediate conversion of styrene to styrene oxide, with high conversion (87%), medium selectivity (65%), and high turnover-frequency (TOF) (243 s−1). However, when bulk NiO was applied only 62% conversion with 68% selectivity and TOF = 174 s−1 were obtained. Furthermore, this catalyst is was easily separable and recyclable. Moreover, a possible reaction mechanism is also proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  • Abboud M, Abu-Haija M, Bel-Hadj-Tahar R, Mubarak AT, Ismail I, Hamdy MS (2020) Highly ordered mesoporous flower-like NiO nanoparticles: synthesis, characterization and photocatalytic performance. New J Chem 44:3402–3411

    Article  CAS  Google Scholar 

  • Abboud M, Bel-Hadj-Tahar R, Fakhri N, Sayari A (2018) Synthesis of ferrocenylazobenzene-functionalized MCM-41 via direct co-condensation method. Micropor Mesopor Mat 265:179–184

    Article  CAS  Google Scholar 

  • Abboud M, Sayari A (2017) Novel family of periodic mesoporous organosilicas containing azobenzene within the pore walls. Micropor Mesopor Mat 249:157–164

    Article  CAS  Google Scholar 

  • Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C (2017) Synthesis, characterization, and efficient catalytic activities of a nickel(II) porphyrin: remarkable solvent and substrate effects on participation of multiple active oxidants. Chem Eur J 23:11969–11976

    Article  CAS  Google Scholar 

  • Ananthi N, Enoch IVMV (2019) Chiral porphyrin imine manganese complex as catalyst for asymmetric epoxidation of styrene derivatives. Chirality 31:155–163

    Article  CAS  Google Scholar 

  • Batra MS, Dwivedi R, Prasad R (2019) Recent developments in heterogeneous catalyzed epoxidation of styrene to styrene oxide. ChemistrySelect 4:11636–11673

    Article  CAS  Google Scholar 

  • Behnajady MA, Bimeghdar S (2014) Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem Eng J 239:105–113

    Article  CAS  Google Scholar 

  • Bel-Hadj-Tahar R, Bel-Hadj-Tahar N, Ben-Salah A (2007) Preparation and characterization of PZT solid solutions via sol–gel process. J Cryst Growth 307:40–43

    Article  CAS  Google Scholar 

  • Bok KH, Lee MM, You GR, Ahn HM, Ryu KY, Kim S-J, Kim C (2017) Synthesis, characterization, and catalytic activities of a nickel(II) monoamido-tetradentate complex: evidence for NiIII-Oxo and NiIV-Oxo species. Chem Eur J 23:3117–3125

    Article  CAS  Google Scholar 

  • Choudhary VR, Jha R, Jana P (2008) Selective epoxidation of styrene to styrene oxide by TBHP using simple transition metal oxides (NiO, CoO or MoO3) as highly active environmentally-friendly catalyst. Catal Commun 10:205–207

    Article  CAS  Google Scholar 

  • Dai W, Li G, Chen B, Wang L, Gao S (2015) A Porphyrin-Inspired Iron Catalyst for Asymmetric Epoxidation of Electron-Deficient Olefins. Org Lett 17:904–907

    Article  CAS  Google Scholar 

  • Dhanasingh S, Nallasamy D, Padmanapan S, Padaki VC (2014) Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method. Chem Pap 68:1079–1086

    Article  CAS  Google Scholar 

  • Dong Q, Yin S, Guo C, Wu X, Kumada N, Takei T, Sato T (2014) Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Appl Catal B-Environ 147:741–747

    Article  CAS  Google Scholar 

  • Fedorynska E, Winiarek P (1995) Isomerization of alkylaromatic hydrocarbons on nickel-boron-alumina catalysts. React Kinet Catal Lett 54:73–79

    Article  CAS  Google Scholar 

  • Hu R, Yang P, Pan Y, Li Y, He Y, Feng J, Li D (2017) Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene. Dalton Trans 46:13463–13471

    Article  CAS  Google Scholar 

  • Jayalakshmi M, Venugopal N, Reddy BR, Rao MM (2005) Optimum conditions to prepare high yield, phase pure α-Ni(OH)2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions. J Power Sources 150:272–275

    Article  CAS  Google Scholar 

  • Kick JW, Anneser MR, Hofmann B, Pcthig A, Cokoja M, Kihn FE (2015) Fighting Fenton chemistry: a highly active iron(III) tetracarbene complex in epoxidation catalysis. ChemSusChem 8:4056–4063

    Article  CAS  Google Scholar 

  • Klust A, Madix RJ (2006) Selectivity limitations in the heterogeneous epoxidation of olefins: branching reactions of the oxametallacycle intermediate in the partial oxidation of styrene. J Am Chem Soc 128:1034–1035

    Article  CAS  Google Scholar 

  • Liang ZH, Zhu YJ, Hu XL (2004) β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J Phys Chem B 108:3488–3491

    Article  CAS  Google Scholar 

  • Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B Environ 176:532–541

    Article  CAS  Google Scholar 

  • Li JF, Xiao B, Du LJ, Yan R, Liang TD (2008) Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing cellulose. J Fuel Chem Technol 36:42–47

    Article  Google Scholar 

  • Lu B, Kawamoto K (2013) Preparation of the highly loaded and well-dispersed NiO/SBA-15 for methanation of producer gas. Fuel 103:699–704

    Article  CAS  Google Scholar 

  • Martins RL, Schmal MJB (2014) Chem Soc 25:2399Should be replaced by: Martins RL, Schmal M (2014) Activation of Methane on NiO Nanoparticles with Different Morphologies. J Braz Chem Soc 25:2399–2408

    CAS  Google Scholar 

  • Meher SK, Justin P, Ranga RG (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3:2063–2073

    Article  CAS  Google Scholar 

  • Paulose R, Mohan R, Parihar V (2017) Nanostructured nickel oxide and its electrochemical behaviour—a brief review. Nano-struct nano-objects 11:102–111

    Article  CAS  Google Scholar 

  • Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24:4483–4490

    Article  CAS  Google Scholar 

  • Qin J, Li B, Zhang W, Lv W, Han C, Liu J (2015) Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel content. Micropor Mesopor Mat 208:181–187

    Article  CAS  Google Scholar 

  • Rahman S, Farooqui SA, Rai A, Kumar R, Santra C, Prabhakaran VC, Chowdhury B (2015) Mesoporous TUD-1 supported indium oxide nanoparticles for epoxidation of styrene using molecular O2. RSC Adv 5:46850–46860

    Article  CAS  Google Scholar 

  • Ren S, Yang C, Sun C, Hui Y, Dong Z, Wang J, Su X (2012) Novel NiO nanodisks and hollow nanodisks derived from Ni(OH)2 nanostructures and their catalytic performance in epoxidation of styrene. Mater Lett 80:23–25

    Article  CAS  Google Scholar 

  • Ren S, Zhang P, Shui H, Lei Z, Wang Z, Kang S (2010) Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour. Catal Commun 12:132–136

    Article  CAS  Google Scholar 

  • Saikia M, Kaichev V, Saikia L (2016) Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Adv 6:106856–106865

    Article  CAS  Google Scholar 

  • Salavati-Niasari M, Seyghalkar H, Amiri O, Davar F (2013) Simple hydrothermal synthesis of nickel hydroxide flower-like nanostructures. J Clust Sci 24:365–376

    Article  CAS  Google Scholar 

  • Schmidt G (2004) Nanoparticles: from theory to application. VCH, Weinheim

    Google Scholar 

  • Sebastian J, Jinka K, Jasra R (2006) Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobalt(II)-exchanged zeolite X. J Catal 244:208–218

    Article  CAS  Google Scholar 

  • Stanislaus A, Cooper BH (1994) Aromatic hydrogenation catalysis: a review. Catal Rev Sci Eng 36:75–123

    Article  CAS  Google Scholar 

  • Sun J, Kan QB, Li ZF, Yu GL, Liu H, Yang XY, Huo QS, Guan JQ (2014) Different transition metal (Fe2+, Co2+, Ni2+, Cu2+or VO2+) Schiff complexes immobilized onto three-dimensional mesoporous silica KIT-6 for the epoxidation of styrene. RSC Adv 4:2310–2317

    Article  CAS  Google Scholar 

  • Su H, Li Z, Huo Q, Guan J, Kan Q (2014) Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Adv 4:9990

    Article  CAS  Google Scholar 

  • Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2009) Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catal Commun 10:1070–1073

    Article  CAS  Google Scholar 

  • Tang Y, Gao H, Yang M, Wang G, Li J, Zhang H, Tao Z (2016) NiO promoted CuO–NiO/SBA-15 composites as highly active catalysts for epoxidation of olefins. New J Chem 40:8543–8548

    Article  CAS  Google Scholar 

  • Valand J, Parekh H, Friedrich HB (2013) Mixed Cu–Ni–Co nano-metal oxides: A new class of catalysts for styrene oxidation. Catal Commun 40:149–153

    Article  CAS  Google Scholar 

  • Xu G, Xia QH, Lu XH, Zhang Q, Zhan HJ (2007) Selectively catalytic epoxidation of styrene with dry air over the composite catalysts of Co-ZSM-5 coordinated with ligands. J Mol Catal A Chem 266:180–187

    Article  CAS  Google Scholar 

  • Yadav GD, Lawate YS (2013) Hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea microencapsulated mono- and bimetallic nanocatalysts: activity, selectivity, and kinetic modeling. Ind Eng Chem Res 52:4027–4039

    Article  CAS  Google Scholar 

  • Yadav SK, Jeevanandam P (2014) Synthesis of NiO–Al2O3 nanocomposites by sol–gel process and their use as catalyst for the oxidation of styrene. J Alloy Compd 610:567–574

    Article  CAS  Google Scholar 

  • Yang D, Wang R, He M, Zhang J, Liu Z (2005) Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties. J Phys Chem B 109:7654–7658

    Article  CAS  Google Scholar 

  • Yang F, Zhou S, Gao S, Liu X, Long S, Kong Y (2017) In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation. Micropor Mesopor Mat 238:69–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Deanship of Scientific Research at King Khalid University for funding this work through a research group project number R.G.P.1/115/40. The authors would like to express their gratitude to King Khalid University (Abha, Saudi Arabia) for providing administrative and technical support.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abboud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahlabji, T., Abboud, M., Bel-Hadj-Tahar, R. et al. Spontaneous epoxidation of styrene catalyzed by flower-like NiO nanoparticles under ambient conditions. J Nanopart Res 22, 364 (2020). https://doi.org/10.1007/s11051-020-05098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05098-w

Keywords

Navigation