Skip to main content
Log in

Electronic and NLO characteristics of small neutral and singly charged iron-doped bismuth clusters

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The electronic and optical properties of the iron-doped bismuth nanoclusters having less than 15 atoms are presented here. This doping is especially interesting since it enhances the stability and magnetic properties of the bismuth clusters, as shown here. The effect of singly charging the clusters on their stability and electronic properties is also investigated. Binding energy analysis shows that iron doping enhances the relative stability of the small bismuth clusters. An almost regular pattern is observed for the maximum Raman peak of the first five clusters and the succeeding nine clusters. An oscillating magnetic moment behavior is observed for the neighboring bismuth numbers from 5 to 11. Singly charged clusters also show similar magnetic characteristics. HOMO-LUMO energy gap also follows the expected pattern of the quantum confinement as larger clusters demonstrate the smaller difference between these two levels. Interestingly, this general downward trend falls in the range of visible light. The projected density of states (PDOS) also confirms the obtained results for the energy gap. The charge distribution behavior shows negative charge accumulation on iron atoms except for the case of FeBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Belin-Ferré E (2010) Surface properties and engineering of complex intermetallics, Vol. 3. World Scientific

  • Ben-Xia Z, Dong D, Ling W, Ji-Xian Y (2014) Density functional study on the structural, electronic, and magnetic properties of 3d transition-metal-doped au5 clusters. J Phys Chem A 118(22):4005–4012

    Google Scholar 

  • Black M, Lin Y-M, Cronin S, Rabin O, Dresselhaus M (2002) Infrared absorption in bismuth nanowires resulting from quantum confinement. Phys Rev B 65(19):195417

    Google Scholar 

  • Chen Z-H, Xie Z (2018) First-principles investigations of dimetallic carbide clusters: Bi 2 c n (n = 1–16). Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 1–10

  • Cheng D, Huang S, Wang W (2006) The structure of 55-atom cu–au bimetallic clusters: Monte Carlo study. Eur Phys J D Atom Mol Opt Plasma Phys 39(1):41–48

    CAS  Google Scholar 

  • Cheng X-H, Ding D-J, Yu Y-G, Jin M-X (2013) Geometrical structures and electronic properties of copper-doped aluminum clusters. Chin J Chem Phys 25(2):169

    Google Scholar 

  • Dresselhaus M, Lin Y, Rabin O, Jorio A, Souza Filho A, Pimenta M, Saito R, Samsonidze G, Dresselhaus G (2003) Nanowires and nanotubes. Mater Sci Eng C 23 (1-2):129–140

    Google Scholar 

  • Deshpande M, Kanhere D, Pandey R (2005) Structures, energetics, and magnetic properties of ni n b clusters with n = 1–8, 12. Phys Rev A 71(6):063202

    Google Scholar 

  • Ferhat M, Zaoui A (2006) Structural and electronic properties of iii-v bismuth compounds. Phys Rev B 73(11):115107

    Google Scholar 

  • Florez E, Mondragon F, Illas F (2012) Theoretical study of the structure and reactivity descriptors of cunm (mni, pd, pt; n = 1–4) bimetallic nanoparticles supported on mgo (001). Surf Sci 606 (13–14):1010–1018

    CAS  Google Scholar 

  • Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young E, Tiedje T (2006) Giant spin-orbit bowing in gaas 1- x bi x. Phys Rev Lett 97(6):067205

    CAS  Google Scholar 

  • Frisch J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson A, et al. (2010) Gaussian 09 program, revision c. 01

  • Gao L, Li P, Lu H, Li S, Guo Z (2008) Size-and charge-dependent geometric and electronic structures of bi n (bi n-) clusters (n = 2–13) by first-principles simulations. J Chem Phys 128 (19):194304

    Google Scholar 

  • González-Ramírez H, Reveles JU, Gómez-Sandoval Z (2013) High magnetic moments on binary yttrium-alkali superatoms. Chem Phys Lett 583:97–102

    Google Scholar 

  • Guo L-J, Zhao G-F, Gu Y-Z, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters m si n (m= sc, ti, v, cr, mn, fe, co, ni, cu, zn; n = 8–16). Phys Rev B 77(19):195417

    Google Scholar 

  • Han S, Xue X, Nie X, Zhai H, Wang F, Sun Q, Jia Y, Li S, Guo Z (2010) First-principles calculations on the role of ni-doping in cun clusters: From geometric and electronic structures to chemical activities towards co2. Phys Lett A 374(42):4324–4330

    CAS  Google Scholar 

  • Heremans J, Thrush C, Zhang Z, Sun X, Dresselhaus M, Ying J, Morelli D (1998) Magnetoresistance of bismuth nanowire arrays: a possible transition from one-dimensional to three-dimensional localization. Phys Rev B 58(16): R10091

    CAS  Google Scholar 

  • Heremans J, Thrush CM, Lin Y-M, Cronin S, Zhang Z, Dresselhaus M, Mansfield J (2000) Bismuth nanowire arrays: synthesis and galvanomagnetic properties. Phys Rev B 61 (4):2921

    CAS  Google Scholar 

  • Hihara T, Pokrant S, Becker J (1998) Magnetic moments and chemical bonding in isolated bincom clusters. Chem Phys Lett 294(4-5):357–362

    CAS  Google Scholar 

  • Hou X-F, Yan L-L, Huang T, Hong Y, Miao S-K, Peng X-Q, Liu Y-R, Huang W (2016) A density functional theory study on structures, stabilities, and electronic and magnetic properties of aunc (n = 1–9) clusters. Chem Phys 472:50–60

    CAS  Google Scholar 

  • Iwasa T, Nakajima A (2013) Geometric, electronic and optical properties of a boron-doped aluminum cluster of b2al21- a density functional theory study. Chem Phys Lett 582:100–104

    CAS  Google Scholar 

  • Jia J, Chen G, Shi D, Wang B (2008) Structural and electronic properties of bi n (n = 2-14) clusters from density-functional calculations. Eur Phys J D 47(3):359–365

    CAS  Google Scholar 

  • Jiang Z-Y, Yang C-J, Li S-T (2005) Structures and stability of b-doped al clusters: Al n b and al n b 2 (n = 1–7). J Chem Phys 123(20):204315

    Google Scholar 

  • Juárez-Sánchez OJ, Perez-Peralta N, Herrera-Urbina R, Sanchez M, Posada-Amarillas A (2013) Structures and electronic properties of neutral (cus) n clusters (n = 1–6): a dft approach. Chem Phys Lett 570:132–135

    Google Scholar 

  • Kelting R, Baldes A, Schwarz U, Rapps T, Schooss D, Weis P, Neiss C, Weigend F, Kappes MM (2012) Structures of small bismuth cluster cations. J Chem Phys 136 (15):154309

    Google Scholar 

  • Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of msi16 (m= sc, ti, and v). J Am Chem Soc 127(14):4998–4999

    CAS  Google Scholar 

  • Kumar V, Shah EV, Roy DR (2015) Dft investigation on a4b4 (a= cu, ag; b= as, sn) metal–semiconductor alloy clusters for potential nanomaterials. Physica E 68:224–231

    CAS  Google Scholar 

  • Li H-F, Kuang X-Y, Wang H-Q (2011) Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: m@ si6 (m= pr, gd, ho). Phys Lett A 375 (30-31):2836–2844

    CAS  Google Scholar 

  • Li G, Wang K, Wang Q, Zhao Y, Du J, He J (2012) Formation of icosahedral and hcp structures in bimetallic co–cu clusters during the freezing processes. Mater Lett 88:126–128

    CAS  Google Scholar 

  • Liang D, Shen W, Zhang C, Lu P, Wang S (2017) Structural, electronic, vibrational and optical properties of bi n clusters. Mod Phys Lett B 31(28):1750260

    Google Scholar 

  • Ling W, Dong D, Shi-Jian W, Zheng-Quan Z (2015) Geometrical, electronic, and magnetic properties of cunfe (n = 1–12) clusters: a density functional study. J Phys Chem Solids 76:10–16

    CAS  Google Scholar 

  • Ma W, Chen F (2012) Optical and electronic properties of cu doped ag clusters. J Alloys Compd 541:79–83

    CAS  Google Scholar 

  • Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) Geometric and electronic structures of terbium- silicon mixed clusters (tbsi n; 6 n 16). J Phys Chem A 106(15):3702–3705

    CAS  Google Scholar 

  • Pal R, Cui L-F, Bulusu S, Zhai H-J, Wang L-S, Zeng XC (2008) Probing the electronic and structural properties of doped aluminum clusters: M al 12-(m= li, cu, and au). J Chem Phys 128(2):024305

    CAS  Google Scholar 

  • Pal R, Wang L-M, Huang W, Wang L-S, Zeng XC (2009) Structural evolution of doped gold clusters: Mau x-(m= si, ge, sn; x = 5- 8). J Am Chem Soc 131(9):3396–3404

    CAS  Google Scholar 

  • Pokrant S, Becker J (2001) Magnetic structure of dyn and dynbim clusters isolated in a molecular beam. J Magn Magn Mater 226:1921–1923

    Google Scholar 

  • Pradhan K, Sen P, Reveles JU, Khanna SN (2008) First-principles study of tmnan (tm= cr, mn, fe, co, ni; n = 4–7) clusters. J Phys Condens Matter 20(25):255–243

    Google Scholar 

  • Shah V, Kanhere D (2009) Electronic structure and magnetic properties of ni 3 n al n clusters. Phys Rev B 80(12):125419

    Google Scholar 

  • Shen W, Han L, Liang D, Zhang C, Ruge Q, Wang S, Lu P (2018) Structural, stability, and vibrational properties of bi n p m clusters. Int J Mod Phys B 32(10):1850117

    CAS  Google Scholar 

  • Srivastava A, Santhibhushan B, Dobwal P (2013) Charge stability and conductance analysis of anthracene-based single electron transistor. Int J Nanosci 12(06):1350045

    Google Scholar 

  • Su W, Qian P, Liu Y, Shen J, Chen N-X (2010) First principle calculations of yttrium-doped palladium clusters. Comput Phys Commun 181(4):726–731

    CAS  Google Scholar 

  • Torres M, Balbás L (2007) Relative stability of si n and si n sc-clusters in the range n = 14–18. Eur Phys J D 43(1-3):217–220

    CAS  Google Scholar 

  • Veldeman N, Höltzl T, Neukermans S, Veszprémi T, Nguyen MT, Lievens P (2007) Experimental observation and computational identification of sc@ cu 16+, a stable dopant-encapsulated copper cage. Phys Rev A 76(1):011201

    Google Scholar 

  • Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y (2010) Titanium-doped nickel clusters tini n (n = 1- 12): geometry, electronic, magnetic, and hydrogen adsorption properties. J Phys Chem A 114(15):5049–5057

    CAS  Google Scholar 

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    CAS  Google Scholar 

  • Wang M, Qiu G, Huang X, Du Z, Li Y (2009) Study of the size-dependent properties of scnal (n = 1–14) clusters by density-functional theory. J Phys Condens Matter 21(4):046004

    Google Scholar 

  • Wang L-M, Pal R, Huang W, Zeng XC, Wang L-S (2010) Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: M au n-(n = 8–11; m= ag, cu). J Chem Phys 132(11):114306

    Google Scholar 

  • Wu X, Cai W, Shao X (2009) Optimization of bimetallic cu–au and ag–au clusters by using a modified adaptive immune optimization algorithm. J Comput Chem 30(13):1992–2000

    CAS  Google Scholar 

  • Xie H, Li X, Zhao L, Qin Z, Wu X, Tang Z, Xing X (2012) Photoelectron imaging and theoretical calculations of bimetallic clusters: Agcu–, agcu2–, and ag2cu–. J Phys Chem A 116(42):10365–10370

    CAS  Google Scholar 

  • Yin S, Xu X, Moro R, de Heer WA (2005) Measurement of magnetic moments of free bi n mn m clusters. Phys Rev B 72(17):174410

    Google Scholar 

  • Yuan H, Chen H, Kuang A, Miao Y, Xiong Z (2008) Density-functional study of small neutral and cationic bismuth clusters bi n and bi n+(n = 2–24). J Chem Phys 128(9):094305

    CAS  Google Scholar 

  • Zhang R, George TA, Kharel P, Skomski R, Sellmyer DJ (2013) Susceptibility of fe atoms in cu clusters. J Appl Phys 113(17):17E148

    Google Scholar 

  • Zhou Y, Zeng Z, Ju X (2009) The structural and electronic properties of cumagn (m+ n = 6) clusters. Microelectron J 40(4-5):832–834

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Kokabi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokabi, A., Salehiyoun, M. Electronic and NLO characteristics of small neutral and singly charged iron-doped bismuth clusters. J Nanopart Res 22, 329 (2020). https://doi.org/10.1007/s11051-020-04948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04948-x

Keywords

Navigation