Skip to main content

Fabrication of double-sided comb-like F/Ce co-doped BiVO4 micro/nanostructures for enhanced photocatalytic degradation and water oxidation

Abstract

Hierarchically branched structures have attracted particular attention for the application in photocatalysis owing to their special physicochemical features. But the construction of hierarchical branch semiconductors is usually expensive and complex. In this work, a novel double-sided comb-like fluoride (F) and cerium (Ce3+) co-doped monoclinic BiVO4 macro/nanostructured photocatalyst (BFCe) was successfully prepared through coupling via a facile hydrothermal method and calcination at 500 °C. A possible growth mechanism of the double-sided comb-like monoclinic BiVO4 was proposed and discussed. Compared with undoped (BVO) and F (BF) and Ce (BCe) single-doped bismuth vanadate, the BFCe sample (the mass ratio of Ce3+ to F was 1:2) exhibited considerably increased photocatalytic performance toward degrading the rhodamine blue dye (94.8%) and water splitting (O2 evolution was 338.59 μmol/g). Experimental results showed that the F and Ce3+ doping expands the visible light absorbance while enhancing the specific surface area. Thus, the double doping of F and Ce3+ provided a synergistic effect, resulting in optimized photocatalytic decomposition efficiency, as corroborated by luminescence spectroscopy measurements. This work can serve as a useful guide for the engineering design of novel micro/nanomaterial with an increased catalytic performance for various applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbood HA, Huang K (2018) Photocatalysis of several organic dyes by a hierarchical ­ Ag 2 V 4 O 11 micro – nanostructures. J Mater Sci Mater Electron 0:0 29:8068–8077. https://doi.org/10.1007/s10854-018-8813-x

    CAS  Article  Google Scholar 

  2. Abbood HA, Peng H, Gao X et al (2012) Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product. Chem Eng J 209:245–254. https://doi.org/10.1016/j.cej.2012.08.027

    CAS  Article  Google Scholar 

  3. Abbood HA, Ahmed KAM, Ren Y, Huang K (2013) MnV2O6×V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties. Appl Phys A Mater Sci Process 112:901–909. https://doi.org/10.1007/s00339-012-7444-y

    CAS  Article  Google Scholar 

  4. Ahmed T, Ammar M, Saleem A et al (2020) Z-scheme 2D-m-BiVO 4 networks decorated by a g-CN nanosheet heterostructured photocatalyst with an excellent response to visible light. RSC Adv 10:3192–3202

    CAS  Article  Google Scholar 

  5. Chen F, Yang Q, Yao F et al (2019) Synergetic transformations of multiple pollutants driven by BiVO 4 -catalyzed sulfite under visible light irradiation: reaction kinetics and intrinsic mechanism. Chem Eng J 355:624–636. https://doi.org/10.1016/j.cej.2018.08.182

    CAS  Article  Google Scholar 

  6. Geng Y, Zhang P, Li N, Sun Z (2015) Synthesis of co doped BiVO<inf>4</inf> with enhanced visible-light photocatalytic activities. J Alloys Compd 651:744–748. https://doi.org/10.1016/j.jallcom.2015.08.123

    CAS  Article  Google Scholar 

  7. Gu S, Li W, Wang F et al (2015) Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Appl Catal B Environ 170–171:186–194. https://doi.org/10.1016/j.apcatb.2015.01.044

    CAS  Article  Google Scholar 

  8. Gu S, Li W, Wang F, Li H, Zhou H (2016) Lanthanide ions Ce(III,IV) substituted for Bi in BiVO4 and its enhanced impact on visible light-driven photocatalytic activities. Catal Sci Technol 6:1870–1881

    CAS  Article  Google Scholar 

  9. He B, Li Z, Zhao D et al (2018) Fabrication of porous Cu-doped BiVO 4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Appl Nano Mater 1:2589–2599. https://doi.org/10.1021/acsanm.8b00281

    CAS  Article  Google Scholar 

  10. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Article  Google Scholar 

  11. Hou L, Yang L, Li J et al (2012) Efficient sunlight-induced methylene blue removal over one-dimensional mesoporous monoclinic BiVO4 nanorods. J Anal Methods Chem 345247:9. https://doi.org/10.1155/2012/345247

  12. Hu J, He H, Li L, Zhou X, Li Z, Shen Q, Wu C, Asiri AM, Zhou Y, Zou Z (2019) Highly symmetrical, 24-faceted, concave BiVO 4 polyhedron bounded by multiple high-index facets for prominent photocatalytic O 2 evolution under visible light. Chem Commun 55:4777–4780. https://doi.org/10.1039/C9CC01366K

    CAS  Article  Google Scholar 

  13. Huang ZF, Pan L, Zou JJ, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6:14044–14063. https://doi.org/10.1039/c4nr05245e

    CAS  Article  Google Scholar 

  14. Jaihindh DP, Thirumalraj B, Chen SM et al (2019) Facile synthesis of hierarchically nanostructured bismuth vanadate: an efficient photocatalyst for degradation and detection of hexavalent chromium. J Hazard Mater:647–657. https://doi.org/10.1016/j.jhazmat.2019.01.017

  15. Jiang Z, Liu Y, Jing T et al (2016) Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. J Phys Chem C 120:2058–2063. https://doi.org/10.1021/acs.jpcc.5b10856

    CAS  Article  Google Scholar 

  16. Kim TW, Choi KS (2014) Nanoporous BiVO4photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. https://doi.org/10.1126/science.1246913

  17. Kong D, Qi J, Liu D et al (2019) Ni-doped BiVO 4 with V 4+ species and oxygen vacancies for efficient photoelectrochemical water splitting. Trans Tianjin Univ 25:340–347

    CAS  Article  Google Scholar 

  18. Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O 2 evolution under visible light irradiation on BiVO 4 in aqueous AgNO 3 solution. Catal Lett 53:229–230

    CAS  Article  Google Scholar 

  19. Lao JY, Huang JY, Wang DZ, Ren ZF (2004) Hierarchical oxide nanostructures. J Mater Chem:770–773. https://doi.org/10.1039/b311639e

  20. Li JQ, Guo ZY, Liu H et al (2013) Two-step hydrothermal process for synthesis of F-doped BiVO4 spheres with enhanced photocatalytic activity. J Alloys Compd 581:40–45. https://doi.org/10.1016/j.jallcom.2013.06.141

    CAS  Article  Google Scholar 

  21. Li W, Gao S, Li L, Jiao S, Li H, Wang J, Yu Q, Zhang Y, Wang D, Zhao L (2016) Hydrothermal synthesis of a 3D double-sided comb-like ZnO nanostructure and its growth mechanism analysis. Chem Commun 52:8231–8234. https://doi.org/10.1039/c6cc02072k

    CAS  Article  Google Scholar 

  22. Li HB, Zhang J, Huang GY et al (2017) Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4. Trans Nonferrous Metals Soc China 27:868–875. https://doi.org/10.1016/S1003-6326(17)60102-X

    CAS  Article  Google Scholar 

  23. Li Z, Jin C, Wang M (2018) Fabrication of Co3+ and B co-doping BiVO4 with improved photocatalytic performance for organic degradation. In: MATEC web of conferences. EDP Sciences, p 3008

  24. Lin F, Shao Z, Li P et al (2017) Low-cost dual cocatalysts BiVO4 for highly efficient visible photocatalytic oxidation. RSC Adv 7:15053–15059. https://doi.org/10.1039/c6ra27559a

    CAS  Article  Google Scholar 

  25. Liu AT, Tan G, Zhao C, et al (2017a) Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO4 photocatalysts. https://doi.org/10.1016/j.apcatb.2017.05.018

  26. Liu T, Tan G, Zhao C et al (2017b) Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO 4 photocatalysts. Appl Catal B Environ 213:87–96. https://doi.org/10.1016/j.apcatb.2017.05.018

  27. Lopes OF, Carvalho KTG, Nogueira AE et al (2016) Controlled synthesis of BiVO4 photocatalysts: evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl Catal B Environ 188:87–97. https://doi.org/10.1016/j.apcatb.2016.01.065

    CAS  Article  Google Scholar 

  28. Luo XL, Liu CJ, Chen MJ et al (2017) Electrochemical performance and enhanced photocatalytic activity of Ce-doped BiVO4under visible light irradiation. Mater Res Bull 94:428–434. https://doi.org/10.1016/j.materresbull.2017.06.042

    CAS  Article  Google Scholar 

  29. Meng X, Zhang Z (2016) Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J Mol Catal A Chem 423:533–549. https://doi.org/10.1016/j.molcata.2016.07.030

    CAS  Article  Google Scholar 

  30. Mohamed NA, Ullah H, Safaei J et al (2019) Efficient photoelectrochemical performance of gamma irradiated g-C3N4 and its g-C3N4@BiVO4 heterojunction for solar water splitting. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.9b00217

  31. Obregón S, Colón G (2014) Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst. Appl Catal B Environ 152–153:328–334. https://doi.org/10.1016/j.apcatb.2014.01.054

    CAS  Article  Google Scholar 

  32. Park HS, Kweon KE, Ye H et al (2011) Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115:17870–17879

    CAS  Article  Google Scholar 

  33. Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337. https://doi.org/10.1039/c2cs35260e

    CAS  Article  Google Scholar 

  34. Pattengale B, Huang J (2016) The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO4 photoanodes. Phys Chem Chem Phys 18:32820–32825. https://doi.org/10.1039/c6cp06407h

    CAS  Article  Google Scholar 

  35. Pi Y, Liu M, Sun J et al (2014) Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Appl Catal B Environ 152–153:413–424. https://doi.org/10.1016/j.apcatb.2014.01.059

    CAS  Article  Google Scholar 

  36. Prasad U, Prakash J, Kannan A (2020) Effect of yttrium, ytterbium with tungsten co-doping on light absorption and charge transport properties of bismuth vanadate photoanodes to achieve superior photoelectrochemical water splitting. Sustainable Energy & Fuels

  37. Regmi C, Kshetri YK, Ray SK et al (2017) Utilization of visible to NIR light energy by Yb +3 , Er +3 and Tm +3 doped BiVO 4 for the photocatalytic degradation of methylene blue. Appl Surf Sci 392:61–70. https://doi.org/10.1016/j.apsusc.2016.09.024

    CAS  Article  Google Scholar 

  38. Regmi C, Kshetri YK, Pandey RP, Lee SW (2018) Visible-light-driven S and W co-doped dendritic BiVO4 for efficient photocatalytic degradation of naproxen and its mechanistic analysis. Mol Catal 453:149–160. https://doi.org/10.1016/j.mcat.2018.05.008

    CAS  Article  Google Scholar 

  39. Regmi C, Kshetri YK, Kim TH et al (2019) Mechanistic understanding of enhanced photocatalytic activity of N-doped BiVO 4 towards degradation of ibuprofen: an experimental and theoretical approach. Mol Catal 470:8–18. https://doi.org/10.1016/j.mcat.2019.03.014

    Article  Google Scholar 

  40. Saison T, Chemin N, Chanéac C et al (2015) New insights into BiVO<inf>4</inf> properties as visible light photocatalyst. J Phys Chem C 119:12967–12977. https://doi.org/10.1021/acs.jpcc.5b01468

    CAS  Article  Google Scholar 

  41. Saithathul Fathimah S, Prabhakar Rao P, James V, Raj AK, Chitradevi GR, Leela S (2014) Probing structural variation and multifunctionality in niobium doped bismuth vanadate materials. Dalton Trans 43:15851–15860. https://doi.org/10.1039/c4dt01788a

    CAS  Article  Google Scholar 

  42. Takashima T, Moriyama N, Fujishiro Y et al (2019) Visible-light-induced water splitting on hierarchically constructed Z-scheme photocatalyst composed of zinc rhodium oxide and bismuth vanadate. J Mater Chem A. https://doi.org/10.1039/C8TA12316K

  43. Tan HL, Amal R, Ng YH (2017) Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A 5:16498–16521. https://doi.org/10.1039/c7ta04441k

    CAS  Article  Google Scholar 

  44. Tian X, Pei F, Fei J et al (2006) Synthesis and growth mechanism: a novel comb-like ZnO nanostructure. Phys E Low-Dimensional Syst Nanostruct 31:213–217. https://doi.org/10.1016/j.physe.2005.12.164

    CAS  Article  Google Scholar 

  45. Ullah H, Tahir AA, Mallick TK (2018) Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis. Appl Catal B Environ 224:895–903. https://doi.org/10.1016/j.apcatb.2017.11.034

    CAS  Article  Google Scholar 

  46. Usai S, Obregón S, Becerro AI, Colón G (2013) Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J Phys Chem C 117:24479–24484. https://doi.org/10.1021/jp409170y

    CAS  Article  Google Scholar 

  47. Walsh A, Yan Y, Huda MN et al (2009) Band edge electronic structure of \ce{BiVO4}: elucidating the role of the bi \textit{s} and V \textit{d} orbitals. Chem Mater 21:547–551

    CAS  Article  Google Scholar 

  48. Wang Q, Li Y, Zeng Z, Pang S (2012) Relationship between crystal structure and luminescent properties of novel red emissive BiVO 4:Eu 3+ and its photocatalytic performance. J Nanopart Res 14:1–8. https://doi.org/10.1007/s11051-012-1076-1

    CAS  Article  Google Scholar 

  49. Wang M, Che Y, Niu C, Dang M, Dong D (2013a) Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange. J Hazard Mater 262:447–455. https://doi.org/10.1016/j.jhazmat.2013.08.063

    CAS  Article  Google Scholar 

  50. Wang M, Che Y, Niu C et al (2013b) Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange. J Rare Earths 31:878–884. https://doi.org/10.1016/S1002-0721(12)60373-1

    CAS  Article  Google Scholar 

  51. Wang M, Niu C, Liu Q et al (2014) Enhanced photo-degradation methyl orange by N-F co-doped BiVO4 synthesized by sol-gel method. Mater Sci Semicond Process 25:271–278. https://doi.org/10.1016/j.mssp.2013.12.031

    CAS  Article  Google Scholar 

  52. Wang M, Niu C, Liu J et al (2015) Effective visible light-active nitrogen and samarium co-doped BiVO<inf>4</inf> for the degradation of organic pollutants. J Alloys Compd 648:1109–1115. https://doi.org/10.1016/j.jallcom.2015.05.115

    CAS  Article  Google Scholar 

  53. Wang B, Guo L, He T (2016) Fabrication of an olive-like BiVO 4 hierarchical architecture with enhanced visible-light photocatalytic activity. RSC Adv 6:30115–30124. https://doi.org/10.1039/c5ra21687g

    CAS  Article  Google Scholar 

  54. Wang M, Guo P, Chai T et al (2017) Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4prepared via ethylene glycol solvothermal method. J Alloys Compd 691:8–14. https://doi.org/10.1016/j.jallcom.2016.08.198

    CAS  Article  Google Scholar 

  55. Wang Z, Huang X, Wang X (2019) Highlights SC. Catal Today. https://doi.org/10.1016/j.cattod.2019.01.067

  56. Xiao B, Lin L, Hong J, et al (2017) RSC advances synthesis of a monoclinic BiVO 4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. 7547–7554. https://doi.org/10.1039/c6ra28262h

  57. Xu J, Bian Z, Xin X et al (2018) Size dependence of nanosheet BiVO4 with oxygen vacancies and exposed {0 0 1} facets on the photodegradation of oxytetracycline. Chem Eng J 337:684–696. https://doi.org/10.1016/j.cej.2017.12.133

    CAS  Article  Google Scholar 

  58. Xue S, He H, Wu Z et al (2017) An interesting Eu,F-codoped BiVO4microsphere with enhanced photocatalytic performance. J Alloys Compd 694:989–997. https://doi.org/10.1016/j.jallcom.2016.10.146

    CAS  Article  Google Scholar 

  59. Yang K, Li X, Yu C et al (2019) Review on heterophase/homophase junctions for efficient photocatalysis: the case of phase transition construction. Chin J Catal 40:796–818. https://doi.org/10.1016/S1872-2067(19)63290-0

    CAS  Article  Google Scholar 

  60. Yin C, Zhu S, Chen Z et al (2013) One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation. J Mater Chem A 1:8367–8378. https://doi.org/10.1039/c3ta11833a

    CAS  Article  Google Scholar 

  61. Yu C, He H, Liu X et al (2019) Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants. Chin J Catal 40:1212–1221. https://doi.org/10.1016/S1872-2067(19)63359-0

    CAS  Article  Google Scholar 

  62. Zhang Y, Shi L, Geng Z et al (2019) The improvement of photocatalysis O 2 production over BiVO 4 with amorphous FeOOH shell modification. Sci Rep 9:1–10

    Article  Google Scholar 

  63. Zhao Z, Luo W, Li Z, Zou Z (2010) Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4 4. Phys Lett Sect A Gen Atomic Solid State Phys 374:4919–4927. https://doi.org/10.1016/j.physleta.2010.10.014

    CAS  Article  Google Scholar 

  64. Zhao Y, Huang X, Gao F, Zhang L, Tian Q, Fang ZB, Liu P (2019) Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity. Nanoscale 11:9085–9090. https://doi.org/10.1039/c9nr01676g

    CAS  Article  Google Scholar 

  65. Zheng J, Xiong FQ, Zou M et al (2016) Enhanced photocatalytic degradation of rhodamine B under visible light irradiation on mesoporous anatase TiO 2 microspheres by codoping with W and N. Solid State Sci 54:49–53. https://doi.org/10.1016/j.solidstatesciences.2015.10.008

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hayder A. Abbood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 427 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbood, H.A., Alabdie, A., Al-Hawash, A. et al. Fabrication of double-sided comb-like F/Ce co-doped BiVO4 micro/nanostructures for enhanced photocatalytic degradation and water oxidation. J Nanopart Res 22, 78 (2020). https://doi.org/10.1007/s11051-020-04792-z

Download citation

Keywords

  • Micro/nanostructure
  • BiVO4
  • Co-doping photocatalysis
  • Photodegradation of dyes