Skip to main content
Log in

Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, antioxidant copper nanoparticles (CuNPs) were prepared by the modified polyol method using polyvinylpyrrolidone (PVP) and L-ascorbic acid as protective agents. The CuNPs with diameters of 61 ± 12 nm were coated with 8-nm-thick PVP coating and showed excellent resistance to chemical oxidation and coagulation for more than 160 days in ethylene glycol solution. The unique catalytic properties of CuNPs that do not appear in normal CuO or Cu2O nanoparticles are due to the properties of metallic copper elements. The CuNPs exhibited prolonged catalytic activity toward the chemical reduction of 4-nitrophenol as well as the excellent electrocatalytic reduction of nitrite (NO2), suggesting an efficient electrochemical sensor for nitrite determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Athanassiou EK, Grass RN, Stark WJ (2006) Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology 17:1668–1673

    Article  CAS  Google Scholar 

  • Beltramo GL, Kope MTM (2003) Nitric oxide reduction and oxidation on stepped Pt[n(111)×(111)] Electrodes. Langmuir 19:8907–8915

    Article  CAS  Google Scholar 

  • Carey JL, Whitcomb DR, Chen S, Penn RL, Buhlmann P (2015) Potentiometric in situ monitoring of anions in the synthesis of copper and silver nanoparticles using the polyol process. ACS Nano 9:12104–12114

    Article  CAS  Google Scholar 

  • Deka P, Deka RC, Bharali P (2014) In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J Chem 38:1789–1793

    Article  CAS  Google Scholar 

  • Fievet F, Fievet FV, Lagler JP, Dumont B, Figlarz M (1993) Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J. Mater. Chem. 3(6):627–632

    Article  CAS  Google Scholar 

  • Forge LS, Port D, Roch M, Robic A, Elst CV, Muller LRN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108:2064–2110

    Article  Google Scholar 

  • Gawande MB, Branco PS, Parghi K, Shrikhande JJ, Pandey RK, Ghumman CAA, Bundaleski N, Teodoro O, Jayaram RV (2011) Synthesis and characterization of versatile MgO–ZrO 2 mixed metal oxide nanoparticles and their applications. Catal Sci Technol 1:1653–1664

    Article  CAS  Google Scholar 

  • Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  Google Scholar 

  • Gonçalves RV, Wojcieszak R, Wender H, Dias CSB, Vono LLR, Eberhardt D, Teixeira SR, Rossi LM (2015) Easy access to metallic copper nanoparticles with high activity and stability for CO oxidation. ACS Appl Mater Interfaces 7:7987–7994

    Article  Google Scholar 

  • Henglein A (2000) Formation and absorption Spectrum of copper nanoparticles from the Radiolytic Reduction of Cu(CN)2 . J Phys Chem B 104:1206–1211

    Article  CAS  Google Scholar 

  • Hosseini M, Fatmehsari DH, Marashi SPH (2015) Synthesis of different copper nanostructures by the use of polyol technique. Appl Phys A 120:1579–1586

    Article  CAS  Google Scholar 

  • Kang X, Wang B, Zhu L, Zhu H (2008) Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear 265:150–154

    Article  CAS  Google Scholar 

  • Koa WY, Chena WH, Cheng CY, Lin KJ (2009) Highly electrocatalytic reduction of nitrite ions on a copper nanoparticles thin film. Sensors Actuators B 137:437–441

    Article  Google Scholar 

  • Lee Y, Choi J, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604/1–415604/7

    CAS  Google Scholar 

  • Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180:821–827

    Article  CAS  Google Scholar 

  • Mahadevan S, Chauhan APS (2016) Investigation of synthesized nanosized copper by polyol technique with graphite powder. Adv. Powder Technol 27:1852–1856

    Article  CAS  Google Scholar 

  • Mei Y, Lu Y, Polzer F, Ballauff M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core− shell microgels. Chem Mater 19:1062–1069

    Article  CAS  Google Scholar 

  • Miyazaki A, Asakawa T, Nakano Y, Balint I (2005) Nitrite reduction on morphologically controlled Pt nanoparticles. Chem Commun 3730–3732

  • Ohde H, Hunt F, Wai CM (2001) Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater 13:4130–4135

    Article  CAS  Google Scholar 

  • Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    Article  CAS  Google Scholar 

  • Rajesh KM, Ajitha B, Ashok Kumar Reddy Y, Suneetha Y, Sreedhara Reddy P (2016) Synthesis of copper nanoparticles and role of pH on particle size control. Mater Today Proc 3:1985–1991

    Article  Google Scholar 

  • Ranu BC, Dey R, Chatterjee T, Ahammed S (2012) Copper nanoparticle-catalyzed carbon Carbon and Carbon Heteroatom Bond Formation with a Greener Perspective. Chem Sus Chem 5:22–44

    Article  CAS  Google Scholar 

  • Sarkar A, Mukherjee T, Kapoor S (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C 112:3334–3340

    Article  CAS  Google Scholar 

  • Sindelar JJ, Milkowski AL (2012) Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 26:259–266

    Article  CAS  Google Scholar 

  • Song X, Sun S, Zhang W, Yin ZJ (2004) A method for the synthesis of spherical copper nanoparticles in the organic phase. Colloid Interface Sci 273:463–469

    Article  CAS  Google Scholar 

  • Sun J, Jing Y, Jia Y, Tillard M, Belin C (2005) Mechanism of preparing ultrafine copper powder by polyol process. Mater Lett 59:3933–3936

    Article  CAS  Google Scholar 

  • Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17

    Article  CAS  Google Scholar 

  • Wolff IA, Wasserman AE (1972) Nitrates, nitrites, and nitrosamines. Science 177:15–19

    Article  CAS  Google Scholar 

  • Yang C, Lu Q, Hu S (2006) A Novel Nitrite Amperometric Sensor and Its Application in Food. Anal Electroanal 18:2188–2193

    Article  CAS  Google Scholar 

  • Yin G, Nishikawa M, Nosaka Y, Srinivasan N, Atarashi D, Sakai E, Miyauchi M (2015) Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 9:2111–2119

    Article  CAS  Google Scholar 

  • Yue R, Lu Q, Zhou Y (2011) A novel nitrite biosensor based on single-layer graphene nanoplatelet–protein composite film. Biosens Bioelectron 26:4436–4441

    Article  CAS  Google Scholar 

  • Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using Ascorbic acid and Chitosan for antimicrobial applications. Carbohydr Polym 112:195–202

    Article  CAS  Google Scholar 

  • Zen JM, Hsu CT, Kumar AS, Lyuu HJ, Lin KY (2004) Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129:841–845

    Article  CAS  Google Scholar 

  • Zhang D, Yang H (2013) Gelatin-stabilized copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Physica B 415:44–48

    Article  CAS  Google Scholar 

  • Zhu H, Zhang C, Yin Y (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Crystal Growth 270:722–728

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program funded by the Ministry of Education (NRF-2017R1D1A1B03028668) and by the Bio & Medical Technology Development Program funded by the Ministry of Science & ICT (NRF-2017M3A9D8029943). We also acknowledge the support of the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A2B6007742).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Young-Jun Lee and Kyungjun Kim contributed equally.

Corresponding authors

Correspondence to Ik-Soo Shin or Kuan Soo Shin.

Ethics declarations

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Kim, K., Shin, IS. et al. Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities. J Nanopart Res 22, 8 (2020). https://doi.org/10.1007/s11051-019-4727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4727-7

Keywords

Navigation