Skip to main content

Advertisement

Log in

Binding Fe2O3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ternary composite with immobilization of Fe2O3 nanoparticles (NPs) onto porous polydopamine-reduced graphene oxide framework, abbreviated as Fe2O3@PDA-RGO, was fabricated via a simple, scalable and cost-efficient hydrothermal reaction. The as-prepared 3D Fe2O3@PDA-RGO nanocomposite provides a specific surface area of 119.9 m2 g-1 on account of the well-dispersed Fe2O3 NPs (~35 nm) onto the PDA-RGO sheets as spacer. When applied as a special faradic electrode material in negative potential region, Fe2O3@PDA-RGO can offer 169 mA h g-1 (609 F g−1) at 1 A g-1. The fabricated AC//Fe2O3@PDA-RGO asymmetric supercapacitor (ASC) delivers an energy density of 35.8 W h kg-1 (0.94 mW h cm-3) at 800 W kg-1 (21 mW cm-3) and an outstanding cyclic stability (75.7% capacity retention after 10,000 cycles). The good performance of Fe2O3@PDA-RGO in single-electrode and ASC manifests the potential the ternary composite in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad SR, Xue CZ, Young RJ (2017) The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Mater Sci Eng B 216:2–9

    CAS  Google Scholar 

  • Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448

    CAS  Google Scholar 

  • Asen P, Shahrokhian S (2017) A high performance supercapacitor based on graphene/ polypyrrole/Cu2O−Cu(OH)2 ternary nanocomposite coated on nickel foam. J Phys Chem C 121:6508–6519

    CAS  Google Scholar 

  • Bharali P, Kuratani K, Takeuchi T, Kiyobayashi T, Kuriyama N (2011) Capacitive behavior of amorphous and crystalline RuO2 composite electrode fabricated by spark plasma sintering technique. J Power Sources 196:7878–7881

    CAS  Google Scholar 

  • Binitha G, Soumya MS, Madhavan AA, Praveen P, Balakrishnan A, Subramanian KRV, Reddy SV, Nair AS, Sivakumar N (2013) Electrospun a-Fe2O3 nanostructures for supercapacitor applications. J Mater Chem A 1:11698–11704

    CAS  Google Scholar 

  • Cao K, Jiao L, Liu Y, Liu H, Wang Y, Yuan H (2015) Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Funct Mater 25:1082–1089

    CAS  Google Scholar 

  • Chen J, Xu J, Zhou S, Zhao N, Wong CP (2015) Template-grown graphene/porous Fe2O3 nanocomposite: a high-performance anode material for pseudocapacitors. Nano Energy 15:719–728

    CAS  Google Scholar 

  • Chen YX, Ma WJ, Cai KF, Yang XW, Huang CJ (2017) In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624

    CAS  Google Scholar 

  • Guo M, Balamurugan J, Thanh TD, Kim NH, Lee JH (2016) Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J Mater Chem A 4:17560–17571

    CAS  Google Scholar 

  • Hang BT, Watanabe T, Eashira M, Okada S, Yamaki J, Hata S, Yoon S, Mochida I (2005) The electrochemical properties of Fe2O3-loaded carbon electrodes for iron–air battery anodes. J Power Sources 150:261–271

    CAS  Google Scholar 

  • Hou L, Shi Y, Wu C, Zhang Y, Ma Y, Sun X, Yuan C (2018) Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv Funct Mater 28:1705921

    Google Scholar 

  • Huang Y, Zeng Y, Yu M, Liu P, Tong Y, Cheng F, Lu X (2017) Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2:1700230

    Google Scholar 

  • Huang SF, Tie D, Wang M, Wang B, Jia P, Wang QJ, Chang GL, Zhang JJ, Zhao YF (2018) Largely increased lithium storage ability of mangnese oxide through continuously electronic structure modulation and elevated capacitive contribution. ACS Sustain Chem Eng 7:740–774

    Google Scholar 

  • Kim H, Seo DH, Kim SW, Kim J, Kang K (2011) Highly reversible Co3O4/graphenehybrid anode for lithium rechargeable batteries. Carbon 49:326–332

    CAS  Google Scholar 

  • Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4: 2958-2961

    CAS  Google Scholar 

  • Li W, Ma ZY, Bai GQ, Hu JM, Guo XH, Dai B, Jia X (2015a) Dopamine-assisted one-step fabrication of Ag@AgCl nanophotocatalyst with tunable morphology, composition and improved photocatalytic performance. Appl Catal B Environ 174–175:43–48

    Google Scholar 

  • Li X, Wang Z, Qiu Y, Pan Q, Hu P (2015b) 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J Alloys Compd 620:31–37

    CAS  Google Scholar 

  • Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH (2016) Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci 9:3135–3142

    CAS  Google Scholar 

  • Liu Y, Liu F, Chen Y, Jiang J, Ai Y, Han S, Lin H (2016) Self-assembled graphene coupled hollow-structured γ-Fe2O3 spheres with crystal of transition for enhanced supercapacitors. RSC Adv 6:23659–23665

    CAS  Google Scholar 

  • Liu JL, Hu RJ, Liu H, Ma JZ (2017) Chips assembled cuboid-like nickel hydroxide/rGO composite material for high performance supercapacitors. J Alloys Compd 718:349–355

    CAS  Google Scholar 

  • Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155

    CAS  Google Scholar 

  • Lu XF, Chen XY, Zhou W, Tong YX, Li GR (2015) α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:14843–14850

    CAS  Google Scholar 

  • Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Mai L (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:14264–14274

    Google Scholar 

  • Pinithchaisakula A, Themsirimongkon S, Promsawan N, Weankeaw P, Ounnunkad K, Saipanya S (2016) An investigation of a polydopamine-graphene oxide composite as a support for an anode fuel cell catalyst. Electrocatalysis 8:36–45

    Google Scholar 

  • Quan H, Cheng B, Xiao Y, Lei S (2016) One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem Eng J 286:165–173

    CAS  Google Scholar 

  • Shi SS, Li ZP, Sun Y, Wang B, Liu QN, Hou YL, Huang SF, Huang JY, Zhao YF (2018) A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy 48:510–517

    CAS  Google Scholar 

  • Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C (2017) Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A 5:9443–9464

    CAS  Google Scholar 

  • Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:27518–27525

    CAS  Google Scholar 

  • Tian JJ, Xue Y, Wang MM, Pei YC, Zhang HC, Wang JJ (2019) Dopamine constructing composite of Ni(HCO3)2-polydopamine-reduced graphene oxide for high performance electrode in hybrid supercapacitors. Electrochim Acta 296:49–58

    CAS  Google Scholar 

  • Wang Z, Liu CJ (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293

    CAS  Google Scholar 

  • Wang DW, Li YQ, Wang QH, Wang TM (2011) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102

    Google Scholar 

  • Wang DY, Tao LQ, Liu Y, Zhang TY, Pang Y, Wang Q, Ren TL.(2016) High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale, 8(48), 20090-20095.

    CAS  Google Scholar 

  • Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799

    CAS  Google Scholar 

  • Xie SL, Zhang M, Liu P, Wang SS, Liu S, Feng HB, Zheng HB, Cheng FL (2017) Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors. Mater Res Bull 96:413–418

    CAS  Google Scholar 

  • Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Masood E, Mai WJ, Ching PW, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736

    CAS  Google Scholar 

  • Ye WH, Chen Y, Zhou YX, Fu JJ, Wu WC, Gao DQ, Zhou F, Wang CM, Xue DS (2014) Enhancing the catalytic activity of flowerike Pt nanocrystals using polydopamine functionalized graphene supports for methanol electrooxidation. Electrochim Acta 142:18–24

    CAS  Google Scholar 

  • Zeng Y, Hao R, Xing B, Hou Y, Xu Z (2010) One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem Commun 46:3920–3922

    CAS  Google Scholar 

  • Zeng YX, Han YH, Zhao YT, Zeng Y, Yu MH, Liu YJ, Tong YX, Lu X (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176

    Google Scholar 

  • Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6:1601053

    Google Scholar 

  • Zhang M, Sha JW, Miao XY, Liu EZ, Shi CS, Li JJ, He CN, Feng Q, Zhao NQ (2017) Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes. J Alloys Compd 696:956–963

    CAS  Google Scholar 

  • Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Lu X (2018) Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater 28:1805618

    Google Scholar 

  • Zhao PH, Li WL, Wang G, Yu BZ, Li XJ, Bai JT, Ren ZY (2014) Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J Alloys Compd 604:87–93

    CAS  Google Scholar 

  • Zhu YY, Cheng S, Zhou WJ, Jia J, Yang LF, Yao MH, Wang MK, Zhou J, Wu P, Liu ML (2017) Construction and performance characterization of α-Fe2O3/rGO composite for long-cycling- life supercapacitor anode. ACS Sustain Chem Eng 5:5067–5074

    CAS  Google Scholar 

  • Zou Y, Wang Y (2011) NiO nanosheets grown on graphene nanosheets as superioranode materials for Li-ion batteries. Nanoscale 3:2615–2620

    CAS  Google Scholar 

  • Zou XF, Zhou Y, Wang ZP, Chen SJ, Xiang B, Qiang YJ, Zhu SS (2018) Facile synthesis of α-Fe2O3 pyramid on reduced graphene oxide for supercapacitor and photo-degradation. J Alloys Compd 744:412–420

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21573059, 21473050 and U1704251).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hucheng Zhang or Jianji Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Xue, Y., Yu, X. et al. Binding Fe2O3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors. J Nanopart Res 21, 247 (2019). https://doi.org/10.1007/s11051-019-4705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4705-0

Keywords

Navigation