Skip to main content
Log in

Highly porous NiO/poly(DVB)HIPE nanocomposites for asphaltene removal: synthesis, kinetics, and thermodynamic studies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Asphaltene precipitation is one of the most important problems of the petroleum industry. Asphaltene collapses during petroleum processing and extraction from the well, blocking the pipes and causing many problems. For this reason, asphaltene should be removed from heavy crude oils to improve the quality of oil and prevent asphaltene deposition. In this study, for the first time, highly porous new polyHIPE nanocomposites containing NiO nanoparticles (NPs) have been prepared for asphaltene removal. The open-celled new poly(DVB)HIPE nanocomposites were synthesized by the polymerization of monomers in the external phase of water-in-oil emulsions containing NiO NPs in the organic phase. The highest surface area was obtained at 5 wt% of NiO NP loading (367 m2/g). The adsorption of asphaltenes from toluene solutions onto NiO/poly(DVB)HIPE nanocomposite was investigated in detail. Maximum adsorption was obtained as 384.6 mg/g at a temperature of 298 K for NiO/poly(DVB)HIPE nanocomposite. The Freundlich, Langmuir, and Temkin isotherm models were used to correlate the adsorption data of asphaltenes on NiO/poly(DVB)HIPE nanocomposite and adsorption constants of these models were calculated. The Freundlich and Langmuir gave better results at different temperatures. The pseudo-second-order kinetic model provided the best correlation with the experimental data (R2 ≥ 0.997). The results of the thermodynamic experiments showed that the adsorption was spontaneous and exothermic. It is concluded that the polyHIPE nanocomposites are important for the oil industry owing to having potential use as an adsorbent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander L, Klug HP (1950) Determination of crystallite size with the x-ray spectrometer. J Appl Phys 2:137–142

    Article  Google Scholar 

  • Barbetta A, Cameron N (2004) Morphology and surface area of emulsion-derived (polyHIPE)s foams prepared with oil-phase soluble porogenic solvents: three-component surfactant system. Macromol 37:3202–3213

    Article  CAS  Google Scholar 

  • Barbetta A, Dentini M, De Vecchis MS, Filippini P, Formisano G, Caiazza S (2005a) Scaffolds based on biopolymeric foams. Adv Funct Mater 15:118–124

    Article  CAS  Google Scholar 

  • Barbetta A, Dentini M, Zannoni EM, De Stefano ME (2005b) Tailoring the porosity and morphology of gelatin-methacrylate polyHIPE scaffolds for tissue engineering applications. Langmuir 21:12333–12341

    Article  CAS  Google Scholar 

  • Barbetta A, Carnachan RJ, Smith KH, Zhao CT, Cameron NR, Kataky R, Hayman M, Przyborski SA, Swan M (2005c) Porous polymers by emulsion templating. Macromol Symp 226:203–211

    Article  CAS  Google Scholar 

  • Brack HP, Fischer D, Peter G, Slaski M, Scherer GG (2004) Infrared and raman spectroscopic investigation of crosslinked polystyrenes and radiation-grafted films. J Polym Sci A Polym Chem 42:59–75

    Article  CAS  Google Scholar 

  • Cameron NR (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–1449

    Article  CAS  Google Scholar 

  • Çetinkaya S, Özker T (2016) Synthesis of NiO nanoparticles for new nanocomposite materials. Chem Sci J 7(2):130. https://doi.org/10.4172/2150-3494.C1.003

    Article  Google Scholar 

  • Çetinkaya S, Khosravi E, Thompson R (2006) Supporting ruthenium initiator on PolyHIPE. J Mol Catal A Chem 254:138–144

    Article  CAS  Google Scholar 

  • Compagnini G, Fragal MM, D’Urso L, Spinella C, Puglisi O (2001) Formation and characterization of high-density silver nanoparticles embedded in silica thin films by “in situ” self-reduction. J Mater Res 16:2934–2938

    Article  CAS  Google Scholar 

  • Deabete S, Fourgeot F, Henn F (2000) X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. J Power Sources 87:125–136

    Article  Google Scholar 

  • Deng XY, Chen Z (2004) Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance. Mater Lett 58:276–280

    Article  CAS  Google Scholar 

  • Dezhong Y, Yudong G, Beiqi L, Baoliang Z (2016) Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion. Colloids Surf A: Physicochem Eng Asp 506:550–556

    Article  CAS  Google Scholar 

  • Franco CA, Montayo T, Nassar NN, Pereira-Almao P (2013a) Adsorption and subsequent oxidation of Colombian asphaltenes onto nickel and palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27:7336–7347

    Article  CAS  Google Scholar 

  • Franco CA, Nassar NN, Ruiz MA, Pereira-Almao P, Cortés FB (2013b) Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy Fuel 27:2899–2907

    Article  CAS  Google Scholar 

  • Ghosh G, Vilchez A, Esquena J, Solans C, Rodríguez-Abreu C (2011) Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions. Mater Chem Phys 130:786–793

    Article  CAS  Google Scholar 

  • Gonzalez MF, Stull CS, Lopez-linares F, Pereira-Almao P (2007) Comparing asphaltene adsoption with model heavy molecules over macroporous solid surfaces. Energy Fuel 21:234–241

    Article  CAS  Google Scholar 

  • Gray MR, Tykwinski RR, Stryker JM, Tan X (2011) Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuel 25:3125–3134

    Article  CAS  Google Scholar 

  • Gurevitch I, Silverstein MS (2010) Polymerized Pickering HIPEs: effects of synthesis parameters on porous structure. J Polym Sci Part A: Polym Chem 48:1516–1525

    Article  CAS  Google Scholar 

  • Haibach K, Menner A, Powell R, Bismarck A (2006) Tailoring mechanical properties of highly porous polymer foams: silica particle reinforced polymer foams via emulsion templating. Polymer 47:4513–4519

    Article  CAS  Google Scholar 

  • Hassan A, Lopez-Linares F, Nassar NN, Carbognani-Arambarri L, Pereira-Almao P (2013) Development of a support for a NiO catalyst for selective adsorption and post adsorption catalytic steam gasification of thermally converted asphaltenes. Catal Today 207:112–118

    Article  CAS  Google Scholar 

  • Hosseinpour N, Khodadadi AA, Bahramian A, Mortazavi Y (2013) Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29:14135–14146

    Article  CAS  Google Scholar 

  • Ikem VO, Menner A, Bismarck A (2008) High internal phase emulsions stabilized solely by functionalized silica particles. Angew Chem Int Edit 47:8277–8279

    Article  CAS  Google Scholar 

  • Ikem VO, Menner A, Bismarck A (2010a) High-porosity macroporous polymers synthesized from titania particle stabilized medium and high internal phase emulsion. Langmuir 26:8836–8841

    Article  CAS  Google Scholar 

  • Ikem VO, Menner A, Horozov TS, Bismarck A (2010b) Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates. Adv Mater 22:3588–3592

    Article  CAS  Google Scholar 

  • Janssen MJ, Ou JDY, Heeter GA, Oorshot CWM (2012) Removal of asphaltene contaminants from hydrocarbon streams using carbon based adsorbents. US Patent 2012/0132566

  • Koponen A, Kataja M, Timonen J (1996) Tortuous flow in porous media. Phys Rev E 54:406–410

    Article  CAS  Google Scholar 

  • Kovacic S, Ferk G, Drofenik M, Krajnc P (2012) Nanocomposite polyHIPEs with magnetic nanoparticles: preparation and heating effect. React Funct Polym 72:955–961

    Article  CAS  Google Scholar 

  • Menner A, Bismarck A (2006) New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure. Macromol Symp 242(1):9–24

    Article  CAS  Google Scholar 

  • Menner A, Ikem V, Salgueiro M, Shaffer MSP, Bismarck A (2007) High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem Commun 6:4274–4276

    Article  CAS  Google Scholar 

  • Mohammadijoo M, Khorshidi ZN, Naderi Z, Sadrnezhaad SK, Mazinani V (2014) Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. J Nanosci Nanotechno 4:6–9

    Google Scholar 

  • Murgich J (2002) Intermolecular forces in aggregates of asphaltenes and resins. J Pet Sci Technol 20:938–997

    Article  CAS  Google Scholar 

  • Musevi SJ, Aslani A, Motahari H, Salimi H (2016) Offer a novel method for size appraise of NiO nanoparticles by PL analysis: synthesis by sonochemical method. J Saudi Chem Soc 20:245–252

    Article  CAS  Google Scholar 

  • Nassar NN (2010) Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy Fuel 24:4116–4122

    Article  CAS  Google Scholar 

  • Nassar NN, Husein MM (2007a) Effect of microemulsion variables on copper oxide nanoparticle uptake by AOR microemulsions. J Colloid Interface Sci 316:442–450

    Article  CAS  Google Scholar 

  • Nassar NN, Husein MM (2007b) Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions. Langmuir 23:13093–13103

    Article  CAS  Google Scholar 

  • Nassar NN, Hassan A, Pereira-Almao P (2011) Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuel 25:1017–1023

    Article  CAS  Google Scholar 

  • Ni XM, Zhao QB, Li BB, Cheng J, Zheng HG (2006) Interconnected β-Ni(OH)2 sheets and their morphology-retained transformation into mesostructured Ni. Solid State Commun 137:585–588

    Article  CAS  Google Scholar 

  • Rezakazemi M, Shirazian S (2019) Lignin-chitosan blend for methylene blue removal: adsorption modeling. J Mol Liq 274:778–791

    Article  CAS  Google Scholar 

  • Ruiz-Morales Y, Mullins OC (2007) Polycyclic aromatic hydrocabons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energy Fuel 21:256–265

    Article  CAS  Google Scholar 

  • Shayan N, Mirzayi B (2015) Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy Fuel 29:1397–1406

    Article  CAS  Google Scholar 

  • Shi J, Wu E (2013) A fast and facile synthesis of mesoporous nickel oxide. Microporous Mesoporous Mater 168:188–194

    Article  CAS  Google Scholar 

  • Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55:304–320

    Article  CAS  Google Scholar 

  • Speight JG (2004) Petroleum asphaltenes. Part 1. Asphaltenes, resins and the structure of petroleum. Oil Gas Sci Technol Rev d’IFP Energies Nouv 59:467–488

    Article  CAS  Google Scholar 

  • Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of of asphaltene: an unfolding story. Fuel 71:1355–1363

    Article  CAS  Google Scholar 

  • Su BL, Sanchez C, Yang XY (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH Verlag & Co, KGaA, Weinheim

    Google Scholar 

  • Tai H, Sergienko A, Silverstein MS (2001) Organic-inorganic networks in foams from high internal phase emulsion polymerizations. Polymer 42:4473–4482

    Article  CAS  Google Scholar 

  • Tarboush BJA, Husein MM (2012) Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. Colloid Interface Sci 378:64–69

    Article  CAS  Google Scholar 

  • Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46

    Article  CAS  Google Scholar 

  • Vílchez A, Rodríguez-Abreu C, Menner A, Bismarck A, Esquena J (2014) Antagonistic effects between magnetite nanoparticles and a hydrophobic surfactant in highly concentrated Pickering emulsions. Langmuir 30:5064–5074

    Article  CAS  Google Scholar 

  • Williams JM (1991) High internal phase water-in-oil emulsions: influence of surfactants on emulsion stability and foam quality. Langmuir 7:1370–1377

    Article  CAS  Google Scholar 

  • Yanhong L, Yunge F, Jianbiao M (2002) The thermal properties of porous polydivinylbenzene beads. React Funct Polym 50:57–65

    Article  Google Scholar 

  • Yarranton HW, Alboudwarej H, Jakher R (2000) Investigation of asphaltene association with vapour pressure osmometry and interfacial tension measurements. Ind Eng Chem Res 39:2916–2924

    Article  CAS  Google Scholar 

  • Zhang H, Liu Y, Yao D, Yang B (2012) Hybridization of inorganic nanoparticles and polymers to create regular and reversible self assembly architectures. Chem Soc Rev 41:6066–6088

    Article  CAS  Google Scholar 

  • Zhang N, Jiang W, Wang T, Gu J, Zhong S, Zhou S, Xie T, Fu J (2015) Facile preparation of magnetic poly(styrene-divinylbenzene) foam and its application as an oil absorbent. Ind Eng Chem Res 54:11033–11039

    Article  CAS  Google Scholar 

  • Zimmer AK, Becker C, Chambliss CK (2013) Exploiting metal oxide nanoparticle selectivity in asphaltenes for identification of pyridyl-containing molecules. Energy Fuel 27:4574–4580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The Scientific and Technological Research Council of Turkey (TUBİTAK) for the financial support for this study (Project No. 214Z074).

Funding

The Scientific and Technological Research Council of Turkey (TUBİTAK), Project No: 214Z074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Çetinkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özker, T., Çetinkaya, S. Highly porous NiO/poly(DVB)HIPE nanocomposites for asphaltene removal: synthesis, kinetics, and thermodynamic studies. J Nanopart Res 21, 206 (2019). https://doi.org/10.1007/s11051-019-4647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4647-6

Keywords

Navigation