Skip to main content
Log in

Pd-P nanoparticles as active catalyst for the hydrogenation of acetylenic compounds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pd-P nanoparticles were obtained by low-temperature reduction of Pd(acac)2 with hydrogen in the presence of elemental phosphorus. Using the EDX analysis, XRD, and HRTEM, the composition, size, and morphology of the particles were determined for different P:Pd ratios. The results of testing Pd-P nanoparticles showed that they are 8–9 times higher in activity in the hydrogenation of mono- and di-substituted acetylenic compounds than Pd-black and phase-pure Pd3P phosphide, while maintaining high selectivity to alkenes at 95–98% conversion of alkynes. Colloidal solutions of Pd-P nanoparticles can act as long-lived supported catalysts (TON = 27,444 mol PA·(mol Pd total)−1). The effect of the P:Pd ratio on the change in the rates of hydrogenation of alkyne (r1) and the resulting alkene (r2) under the action of Pd-P nanoparticles has been found and experimentally substantiated. Electron-deficient small clusters of palladium contained along with palladium phosphides in the Pd-P nanoparticles are responsible for the decrease in the ratio r1:r2 in the ratio range P:Pd = 1–1.5.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken AJ, Ganzha-Hazen J, Brock SL (2005) Solvothermal syntheses of Cu3P via reactions of amorphous red phosphorus with a variety of copper sources. J Solid State Chem 178:970–975

    Article  CAS  Google Scholar 

  • Alley WM, Hamdemir IK, Wang Q, Frenkel AI, Li L, Yang JC, Menard LD, Nuzzo RG, Özkar S, Yih K-H, Johnson KA, Finke RG (2011) Industrial Ziegler-type hydrogenation catalysts made from co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis. Langmuir 27:6279–6294

    Article  CAS  Google Scholar 

  • Al-Wadhaf HA (2015) Synthesis of silica supported palladium nanocatalysts for selective phenylacetylene hydrogenation. Catal Industry 7:234–238

    Article  Google Scholar 

  • Belykh LB, Goremyka TV, Belonogova LN, Schmidt FK (2005) Formation and the nature of activity of Ziegler systems based on palladium β-diketonate complexes in hydrogenation catalysis. J Mol Catal 231:53–59

    Article  CAS  Google Scholar 

  • Belykh LB, Skripov NI, Belonogova LN, Rokhin AV, Shmidt FK (2009) Reaction of palladium bisacetylacetonate with elemental phosphorus. Effect of water on the composition of palladium phosphides. Rus J Gen Chem 79:92–97

    Article  CAS  Google Scholar 

  • Belykh LB, Skripov NI, Stepanova TP, Akimov VV, Tauson VL, Schmidt FK (2013) The state of palladium in the nanosized hydrogenation catalysts modified with elemental phosphorus. Rus J Gen Chem 83:2260–2268

    Article  CAS  Google Scholar 

  • Belykh LB, Skripov NI, Stepanova TP, Akimov VV, Tauson VL, Schmidt FK (2015) The catalytic properties of Pd nanoparticles modified by phosphorus in liquid-phase hydrogenation of o-chloronitrobenzene. Curr Nanosci 11:175–185

    Article  CAS  Google Scholar 

  • Belykh LB, Skripov NI, Stepanova TP, Akimov VV, Tauson VL, Schmidt FK (2016) Influence of phosphorus concentration on the state of the surface layer of Pd–P hydrogenation catalysts. Rus J Gen Chem 86:2022–2032

    Article  CAS  Google Scholar 

  • Belykh LB, Skripov NI, Sterenchuk TP, Kolesnikov SS, Schmidt FK (2017) Phosphorus-modified palladium hydrogenation catalysts: an electron-microscopy study. J Nanosci Nanotechnol 17:696–704

    Article  CAS  Google Scholar 

  • Blanchard PER, Grosvenor AP, Cavell RG, Mar A (2008) X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M) Cr-Ni. Chem Mater 20:7081–7088

  • Boitiaux JP, Cosyns J, Vasudevan J (1983) Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst. Part I: behaviour of small metal particles. Appl Catal 6:41–51

    Article  CAS  Google Scholar 

  • Bowker RH, Smith MC, Carrillo BA, Bussell ME (2012) Synthesis and hydrodesulfurization properties of noble metal phosphides: ruthenium and palladium. Top Catal 55:999–1009

    Article  CAS  Google Scholar 

  • Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao H, Li D, Rodriguez-Castellуn E, Jimenez-Lopez A (2012) Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. J Catal 294:184–198

    Article  CAS  Google Scholar 

  • Callejas JF, Read CG, Roske CW, Lewis NS, Schaak RE (2016) Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem Mater 28:6017–6044

    Article  CAS  Google Scholar 

  • Cao X, Mirjalili A, Wheeler J, Xie W, Jang BW-L (2015) Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene. Front Chem Sci Eng 9:442–449

    Article  CAS  Google Scholar 

  • Carenco S, Leyva-Perez A, Concepcion P, Boissiere C, Mezailles N, Sanchez C, Corma A (2012) Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 7:21–28

    Article  CAS  Google Scholar 

  • Carenco S, Portehault S, Boissière S, Mézailles S, Sanchez N (2014) 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study. Adv Mater 2014(26):371–390

    Article  CAS  Google Scholar 

  • Cecilia JA, Jimenez-Moralesa I, Infantes-Molin A, Rodriguez-Castellon A (2013) Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. J Mol Catal A: Chem 368–369:78–87

    Article  CAS  Google Scholar 

  • Chen Y, Li Y, Zhou J, Zhang S, Rao S, He S, Wei M, Evans DG, Duan X (2015) Metal phosphides derived from hydrotalcite precursors toward the selective hydrogenation of phenylacetylene. ACS Catal 5:5756–5765

    Article  CAS  Google Scholar 

  • Costa DC, Soldati AL, Pecchi G, Bengoa JF, Marchetti SG, Vetere V (2018) Preparation and characterization of a supported system of Ni2 P/Ni12 P5 nanoparticles and their use as the active phase in chemoselective hydrogenation of acetophenone. Nanotechnology 29:215702–215709

    Article  CAS  Google Scholar 

  • Crespo-Quesada M, Yarulin M, Jin M, Xia Y, Kiwi-Minsker L (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are Most active and selective? J Am Chem Soc 133:12787–12794

    Article  CAS  Google Scholar 

  • d’Aquino AI, Danforth SJ, Clinkingbeard TR, Ilic B, Pullan L, Reynolds MA, Murray BD, Bussell ME (2016) Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors. J Catal 335:204–214

    Article  CAS  Google Scholar 

  • Flanagan BTB, Biehl GE, Clewley JD, Kundqvist S, Anderson YJCS (1980) Solution of hydrogen in non-stoichiornetric Pd3P1-x compounds. Faraday I 76:196–208

    Article  CAS  Google Scholar 

  • Gordon AJ, Ford RA (1972) Handbook of practical data, techniques, and references. Wiley, New York

    Google Scholar 

  • Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. 1896-1897. J Am Chem Soc 129:1896–1897

    Article  CAS  Google Scholar 

  • Huang X, Dong X, Huang H, Yue L, Zhu Z, Dai J (2014) Facile synthesis of iron phosphide Fe2P nanoparticle and its catalytic performance in thiophene hydrodesulfurization. J Nanopart Res 16:1–6

    Google Scholar 

  • Kanda Y, Kawanishi Y, Tsujino T, Al-Otaibi AMFM, Uemichi Y (2018) Catalytic activities of noble metal phosphides for hydrogenation and hydrodesulfurization reactions. Catalysts 8:160–172

    Article  CAS  Google Scholar 

  • Kim WJ, Kang JH, Ahn IY, Moon SH (2004) Deactivation behavior of a TiO2-added Pd catalyst in acetylene hydrogenation. J Catal 226:226–229

    Article  CAS  Google Scholar 

  • Kosydar R, Drelinkiewicz A, Lalik E, Gurgul J (2011) The role of alkali modifiers (Li, Na, K, Cs) in activity of 2% Pd/Al2O3 catalysts for 2-ethyl-9, 10-anthraquione hydrogenation. Appl Catal A 402:121–131

    Article  CAS  Google Scholar 

  • Li W, Dhandapani W, Oyama ST (1998) Molybdenum phosphide: a novel catalyst for hydrodenitrogenation. Chem Lett 27:207–210

    Article  Google Scholar 

  • Li D, Senevirathne K, Aquilina L, Brock SL (2015) Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni5P4 and NiP2. Inorg Chem 54:7968–7975

    Article  CAS  Google Scholar 

  • Liu RL, Rodriguez JA, Asakura T, Gomes T, Nakamura T (2005) Desulfurization reactions on Ni2P (001) and α-Mo2C (001) surfaces: complex role of P and C sites. J Phys Chem B 109:4575–4583

    Article  CAS  Google Scholar 

  • Liu Y, McCue AJ, Miao C, Feng J, Li D, Anderson JA (2018) Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. J Catal 364:406–414

    Article  CAS  Google Scholar 

  • Maccarrone MJ, Lederhos CR, Torres G, Betti C, Coloma-Pascual F, Quiroga ME, Yori JC (2012) Partial hydrogenation of 3-hexyne over low-loaded palladium mono and bimetallic catalysts. Appl Catal A Gen 441–442:90–98

    Article  CAS  Google Scholar 

  • Markov PV, Mashkovsky IS, Bragina GO, Warna J, Gerasimov EY, Bukhtiyarov VI, Stakheev AY, Murzin DY (2019) Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: Experimental data and theoretical analysis. Chem Eng J 358:520–530

    Article  CAS  Google Scholar 

  • Matthews JC, Nashua NH, Wood LL (1969) Process for preparing acetylacetonates USA Pat 3474464 Washington, D.C., assignors to W. R. Grace & Co., New York, N.Y., a corporation of Connecticut Filed Aug. 3, 1967, Ser. No. 658,051 Int. Cl. C07f 3/06, 15/00, N08

  • McCue AJ, Anderson JA (2015) Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front Chem Sci Eng 9:142–153

    Article  CAS  Google Scholar 

  • McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Biacchi AJ, Lewis NS, Schaak RE (2014) Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem Mater 26:4826–4831

    Article  CAS  Google Scholar 

  • Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA (2018) Palladium–ruthenium catalyst for selective hydrogenation of furfural to cyclopentanol. Kinet Catal 59:339–346

    Article  CAS  Google Scholar 

  • Mitchell J, Smith DM (1977) Aquametry. Wiley, New York

    Google Scholar 

  • Mobus K, Wolf D, Benischke H, Dittmeier U, Simon K, Packruhn U, Jantke R, Weidlich R, Weber C, Chen B (2010) Hydrogenation of aromatic nitrogroups with precious metal powder catalysts: influence of modifier on selectivity and activity. Top Catal 53:1126–1131

    Article  CAS  Google Scholar 

  • Molnar A, Sarkany A, Varga M (2001) Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. J Mol Catal 173:185–221

    Article  CAS  Google Scholar 

  • Moreau LM, Ha D-H, Bealing CR, Zhang H, Hennig RG, Robinson RD (2012) Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis. Nano Lett 12:4530–4539

    Article  CAS  Google Scholar 

  • Muetterties EL, Sauer JC (1974) Catalytic properties of metal phosphides. Qualitative assay of catalytic properties. J Am Chem Soc 96:3410–3415

    Article  CAS  Google Scholar 

  • Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities in alkenes. Practical and theoretical aspects. Rus Chem Rev 78:231–247

    Article  CAS  Google Scholar 

  • Nikolaev SA, Permyakov NA, Smirnov VV, Vasil’kov AY, Lanin SN (2010) Selective hydrogenation of phenylacetylene into styrene on gold nanoparticles. Kinet Catal 51:288–292

    Article  CAS  Google Scholar 

  • Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251:1075–1100

    Article  CAS  Google Scholar 

  • Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107

    Article  CAS  Google Scholar 

  • Panpranot J, Kontapakdee K, Praserthdam P (2006) Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts. Appl Catal A Gen 314:128–133

    Article  CAS  Google Scholar 

  • Park YH, Price GL (1991a) Deuterium tracer study on the effect of carbon monoxide on the selective hydrogenation of acetylene over palladium/alumina. Ind Eng Chem Res 30:1693–1699

    Article  CAS  Google Scholar 

  • Park YH, Price GL (1991b) Potassium promoter for palladium on alumina selective hydrogenation catalysts. J Chem Soc Chem Commun 17:1188–1189

  • Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436

    Article  CAS  Google Scholar 

  • Protasova LN, Rebrov LN, Choy KL, Pung SY, Engels V, Cabaj M, Wheatley AEH, Schouten JC (2011) ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols. Catal Sci Technol 1:768–777

    Article  CAS  Google Scholar 

  • Roberts EJ, Read CG, Lewis NS, Brutchey RL (2018) Phase-directing ability of an ionic liquid solvent for the synthesis of HER-active Ni2P nanocrystals. ACS Appl Energy Mater 1:1823–1827

    Article  CAS  Google Scholar 

  • Rodriguez JA, Kim J-Y, Hanson JC, Sawhill SJ, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285

    Article  CAS  Google Scholar 

  • Roduner E (2006) Nanoscopic materials size-dependent phenomena. RCS Publishing, Cambridge

    Google Scholar 

  • Savithra GHL, Muthuswamy E, Bowker RH, Carrillo BA, Bussell ME, Brock SL (2013a) Rational design of nickel phosphide hydrodesulfurization catalysts: controlling particle size and preventing sintering. Chem Mater 25:825–833

    Article  CAS  Google Scholar 

  • Savithra GL, Bowker R, Carrillo B, Bussell ME, Brock SL (2013b) Mesoporous matrix encapsulation for the synthesis of monodisperse Pd5P2 nanoparticle hydrodesulfurization catalysts. ACS Appl Mater Interfaces 5:5403–5407

    Article  CAS  Google Scholar 

  • Schmid G, West H, Malm J-O, Bovin J-O, Grenthe J-O (1996) Catalytic properties of layered gold-palladium colloids. Chem Eur J 2:1099–1103

    Article  CAS  Google Scholar 

  • Schmidt FK, Belykh LB, Skripov NI, Belonogova LN, Umanets VA (2010) Synthesis, properties, and activity of nanosized palladium catalysts modified with elemental phosphorus for hydrogenation. Kinet Catal 51:42–49

    Article  CAS  Google Scholar 

  • Shmidt FK, Belykh LB, Umanets VA, Cherenkova TV, Belonogova LN (1999) Formation of the hydrogenation catalyst in the Pd (Acac)2PPh3+ NaH2PO2 system. Kinet Catal 40:418–423

    CAS  Google Scholar 

  • Shmidt FK, Belykh LB, Goremyka TV, Skripov NI, Umanets VA (2006) Formation and the nature of activity of Ziegler systems based on palladium β-diketonate complexes in hydrogenation catalysis. Kinet Catal 47:367–374

    Article  CAS  Google Scholar 

  • Skripov NI, Belykh LB, Belonogova LN, Umanets VA, Stepanova TP, Schmidt FK (2011) Nature of the modifying action of white phosphorus on the properties of nanosized hydrogenation catalysts based on bis (dibenzylideneacetone) palladium (0). Kinet Catal 52:702–710

    Article  CAS  Google Scholar 

  • Skripov NI, Belykh LB, Stepanova TP, Schmidt FK (2015) Liquid-phase hydrogenation of nitrobenzene and o-nitrochlorobenzene in the presence of phosphorus-containing palladium nanoparticles. Kinet Catal 56:181–189

    Article  CAS  Google Scholar 

  • Skripov NI, Belykh LB, Sterenchuk TP, Akimov VV, Tauson VL, Schmidt FK (2017) Factors determining the chemoselectivity of phosphorus-modified palladium catalysts in the hydrogenation of chloronitrobenzenes. Kinet Catal 58:34–45

    Article  CAS  Google Scholar 

  • Stakheev AY, Mashkovskii IS, Baeva GN, Telegina NS (2010) Specific features of the catalytic behavior of supported palladium nanoparticles in heterogeneous catalytic reactions. Rus J Gen Chem 80:618–629

    Article  CAS  Google Scholar 

  • Stakheev A, Markov PV, Taranenko AS, Bragina GO, Baeva GN, Tkachenko OP, Mashkovskii IS, Kashin AS (2015) Size effect of Pd nanoparticles in the selective liquid phase hydrogenation of diphenylacetylene. Kinet Catal 56:733–740

    Article  CAS  Google Scholar 

  • Stojewski M, Kowalska J, Jurczakowski R (2009) R. Influence of phosphorus content on hydrogen sorption in Pd-P thin layers obtained by electroless deposition. J Phys Chem C 113:3707–3712

    Article  CAS  Google Scholar 

  • Stolarov IP, Yakushev IA, Churakov AV, Cherkashina NV, Smirnova NS, Khramov EV, Zubavichus YV, Khrustalev VN, Markov AA, Klyagina AP, Kornev AB, Martynenko VM, Gekhman AE, Vargaftik MN, Moiseev II (2018) Heterometallic palladium (II)–indium (III) and− gallium (III) acetate-bridged complexes: synthesis, structure, and catalytic performance in homogeneous alkyne and alkene hydrogenation. Inorg Chem 57:11482–11491

    Article  CAS  Google Scholar 

  • Stolyarov IP, Gaugash YV, Kryukova GN, Kochubei DI, Vargaftik MN, Moiseev II (2004) New palladium nanoclusters. Synthesis, structure, and catalytic properties. Rus Chem Bul 53:1194–1199

    Article  CAS  Google Scholar 

  • Vilе G, Albani D, Almora-Barrios N, Lоpez N, Pеrez-Ramirez (2016) Advances in the design of nanostructured catalysts for selective hydrogenation. J ChemCatChem 8:21–33

    Article  CAS  Google Scholar 

  • Wang Y, Chen Z, Shen R, Cao X, Chen Y, Chen C, Wang D, Peng Q, Li Y (2016a) Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res 9:1209–1219

    Article  CAS  Google Scholar 

  • Wang Z, Yang L, Zhang R, Li L, Cheng Z, Zhou Z (2016b) Selective hydrogenation of phenylacetylene over bimetallic Pd–Cu/Al2O3 and Pd–Zn/Al2O3 catalysts. Catal Today 264:37–43

    Article  CAS  Google Scholar 

  • Wu T, Kaden WE, Kunkel WA, Anderson SL (2009) Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf Sci 603:2764–2770

    Article  CAS  Google Scholar 

  • Wu Z, Pan T, Chai Y, Ge S, Ju Y, Li Y, Liu K, Lan K, Yip ACK, Zhang M (2018) Synthesis of palladium phosphides for aqueous phase hydrodechlorination: kinetic study and deactivation resistance. J Catal 366:80–90

    Article  CAS  Google Scholar 

  • Yang S, Prins R (2005) New synthesis method for nickel phosphide hydrotreating catalysts. ChemComm:4178–4180

  • Yarulin AE, Crespo-Quesada RM, Egorova EV, Kiwi-Minsker L (2012) Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape_controlled palladium nanoparticles. Kinet Catal 53:253–261

    Article  CAS  Google Scholar 

  • Yarulin A, Yuranova I, Cárdenas-Lizana F, Alexander DTL, Kiwi-Minsker L (2014) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are Most active and selective? Appl Catal A Gen 478:186–193

    Article  CAS  Google Scholar 

  • Zhao M (2016) Fabrication of ultrafine palladium phosphide nanoparticles as highly active catalyst for chemoselective hydrogenation of alkynes. Chem Asian J 11:461–464

  • Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo GI (2016) Polymer-modified supported palladium catalysts for the hydrogenation of acetylene. Kinet Catal 57:360–367

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Government Assignment for Scientific Research from the Ministry of Education and Science of the Russian Federation (no. 4.9489.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila B. Belykh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Skripov, N.I., Sterenchuk, T.P. et al. Pd-P nanoparticles as active catalyst for the hydrogenation of acetylenic compounds. J Nanopart Res 21, 198 (2019). https://doi.org/10.1007/s11051-019-4641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4641-z

Keywords

Navigation