Skip to main content
Log in

Quantum-dots based materials for temperature sensing: effect of cyclic heating-cooling on fluorescence

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Using the temperature dependence of the fluorescence of quantum dots (QDs) in the sensing of temperature is a promising field. In this work, we systematically study the effect of cyclic heating and cooling on the fluorescence of CdSe/ZnS QD and PMMA-QD composite in air. The experimental results show that increasing the temperature causes red-shift of the PL (photoluminescence) emission peak and the decrease of the PL intensity, and decreasing the temperature causes blue-shift of the PL emission peak and the increase of the PL intensity for all the QDs presented in both media. There exists a critical temperature, above which the heating completely damages the surface structures of the QDs and leads to the loss of the luminescence characteristics of the QDs. Placing CdSe/ZnS QDs in PMMA causes blue-shift of the PL emission peak, which likely is due to the shift of the ground state energy of the QDs. The heating-cooling cycle with high peak temperature up to 310 °C does not change the crystal structure of the ZnS in the CdSe/ZnS QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Argyros A, Barton GW, Yu HCY, Leonsaval SG (2010) Temperature effects on emission of quantum dots embedded in polymethylmethacrylate. Appl Opt 49:2749–2752

    Article  Google Scholar 

  • Costa-Fernandez JM (2006) Optical sensors based on luminescent quantum dots. Anal Bioanal Chem 384:37–40

    Article  CAS  Google Scholar 

  • De Bastida G, Arregui FJ, Goicoechea J, Matias IR (2006) Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sensors J 6:1378–1379. https://doi.org/10.1109/JSEN.2006.884436

    Article  CAS  Google Scholar 

  • Fang H-H, Balazs DM, Protesescu L, Kovalenko MV, Loi MA (2015) Temperature-dependent optical properties of PbS/CdS core/shell quantum dot thin films: probing the wave function delocalization. J Phys Chem C 119:17480–17486. https://doi.org/10.1021/acs.jpcc.5b05890

    Article  CAS  Google Scholar 

  • Fernández-Delgado N, Herrera M, Tavabi AH, Luysberg M, Dunin-Borkowski RE, Rodriguez-Cantó PJ, Abargues R, Martínez-Pastor JP, Molina SI (2018) Structural and chemical characterization of CdSe-ZnS core-shell quantum dots. Appl Surf Sci 457:93–97. https://doi.org/10.1016/j.apsusc.2018.06.149

    Article  CAS  Google Scholar 

  • Haldar D, Ghosh A, Bose S, Mondal S, Ghorai UK, Saha SK (2018) Defect induced photoluminescence in MoS 2 quantum dots and effect of Eu 3+ /Tb 3+ co-doping towards efficient white light emission. Opt Mater 79:12–20. https://doi.org/10.1016/j.optmat.2018.03.012

    Article  CAS  Google Scholar 

  • Humam NSB, Sato Y, Takahashi M, Kanazawa S, Tsumori N, Regreny P, Gendry M, Saiki T (2014) Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material. Opt Express 22:14830–14839

    Article  Google Scholar 

  • Jing P, Zheng J, Ikezawa M, Liu X, Lv S, Kong X, Zhao J, Masumoto Y (2009) Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J Phys Chem C 113:13545–13550

    Article  CAS  Google Scholar 

  • Joshi A, Narsingi KY, Manasreh MO, Davis EA, Weaver BD (2006) Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl Phys Lett 89:253109–253179

    Article  Google Scholar 

  • Ke TT, Lo YL, Sung TW, Liao CC (2016) CdSe quantum dots embedded in matrices: characterization and application for low-pressure and temperature sensors. IEEE Sensors J 16:2404–2410

    Article  CAS  Google Scholar 

  • Kharangarh PR, Umapathy S, Singh G (2017) Effect of defects on quantum yield in blue emitting photoluminescent nitrogen doped graphene quantum dots. J Appl Phys 122:145107. https://doi.org/10.1063/1.4991693

    Article  CAS  Google Scholar 

  • Lan X, Masala S, Sargent EH (2014) Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat Mater 13:233–240

    Article  CAS  Google Scholar 

  • Larrión B, Hernáez M, Arregui FJ, Goicoechea J, Bravo J, Matías IR (2009) Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J Sens 2009:1–6. https://doi.org/10.1155/2009/932471

    Article  CAS  Google Scholar 

  • Lee T, Shimura K, Kim D (2018) Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots. Phys Chem Chem Phys 20:11954–11958. https://doi.org/10.1039/c7cp07812a

    Article  CAS  Google Scholar 

  • Mintairov A et al (2004) Nanoindentation and near-field spectroscopy of single semiconductor quantum dots. Phys Rev B 69:155306

    Article  Google Scholar 

  • Szendrei K, Speirs M, Gomulya W, Jarzab D, Manca M, Mikhnenko OV, Yarema M, Kooi BJ, Heiss W, Loi MA (2012) Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Adv Funct Mater 22:1598–1605

    Article  CAS  Google Scholar 

  • Wan Z, Luan W, Tu S (2011) Size controlled synthesis of blue emitting core/shell nanocrystals via microreaction. J Phys Chem C 115:1569–1575

    Article  CAS  Google Scholar 

  • Wan Z, Yang H, Luan W, Tu ST, Zhou X (2010) Facile synthesis of monodisperse CdS nanocrystals via microreaction. Nanoscale Res Lett 5:130–137

    Article  CAS  Google Scholar 

  • Wang H, Yang A, Chen Z, Geng Y (2014) Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film. Optics and Spectroscopy (English translation of Optika i Spektroskopiya) 117:235–239. https://doi.org/10.1134/S0030400X14080116

    Article  CAS  Google Scholar 

  • Wu Y, Li IL, Shuang CR, Zhai JP (2008) Temperature sensor based on iodine-doped hollow core photonic crystal fiber. International Conference on Microwave and Millimeter Wave Technology:890–892

  • Yang H, Luan W, Tu S, Wang ZM (2009) High-temperature synthesis of CdSe nanocrystals in a serpentine microchannel: wide size tunability achieved under a short residence time. Cryst Growth Des 9:1569–1574

    Article  CAS  Google Scholar 

  • Yang H, Luan W, Tu ST, Wang ZM (2008) Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth. Lab Chip 8:451–455

    Article  CAS  Google Scholar 

  • Yin S, Zhao Z, Luan W, Yang F (2016) Optical response of a quantum dot–epoxy resin composite: effect of tensile strain. RSC Adv 6:18126–18133

    Article  CAS  Google Scholar 

Download references

Funding

W Luan is grateful for the financial support from the National Natural Science Fund of China (51475166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiling Luan or Fuqian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Luan, W., Zhang, S. et al. Quantum-dots based materials for temperature sensing: effect of cyclic heating-cooling on fluorescence. J Nanopart Res 21, 185 (2019). https://doi.org/10.1007/s11051-019-4629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4629-8

Keywords

Navigation