Skip to main content
Log in

Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pr3+:LaF3 (CPr = 1%) nanoparticles were characterized by means of transmission electron microscopy (TEM), X-ray diffraction, energy-dispersive spectroscopy, and optical spectroscopy. The obtained 14 nm Pr3+:LaF3 (CPr = 1%) crystalline hexagonal-structured nanoparticles contain Pr, La, and F only. The luminescent spectra emission bands corresponded to the emission bands of Pr3+ions. The Pr3+:LaF3 (CPr = 1%) nanoparticles effectively interact with A 549, LEС, and MDCK cells. By means of TEM, it was revealed that after 2 h of the nanoparticle exposure, A 549, MDCK, and LEС cells internalized the nanoparticles and 20–300 nm agglomerates of the nanoparticles packed into 200–500 nm vesicles were found into the cytoplasm. It seems that the internalization occurs via macropinocytosis. In A 549 cells, some vesicles were disrupted and the nanoparticles escaped the vesicles floating freely in the cytoplasm. Flow cytometry showed that all the cells effectively interact with nanoparticles. This interaction leads to cell granularity change. Specifically, A 549, MDCK, and LEС, and cells treated by nanoparticles have the values of size scattered signal 16 ± 2, 20 ± 3, and 39 ± 3%, respectively, comparing with the untreated cells. The Pr3+:LaF3 (CPr = 1%) nanoparticles were not found into the cellular organelles. The cytotoxicity of the Pr3+:LaF3 (CPr = 1%) nanoparticles is not significant at concentrations of 0.05, 0.1, 0.25, and 0.5 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

The biological experiments and TEM microscopy studies were funded by the subsidy allocated to the Kazan Federal University for the state assignment in the sphere of scientific activities [3.1156.2017/4.6] and [3.5835.2017/6.7]. Microscopy studies were carried out at the Interdisciplinary Center of Analytical Microscopy of the Kazan Federal University. The optical spectroscopy and XRD experiments were funded by the research grant of the Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim S. Pudovkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudovkin, M.S., Zelenikhin, P.V., Shtyreva, V.V. et al. Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles. J Nanopart Res 21, 184 (2019). https://doi.org/10.1007/s11051-019-4628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4628-9

Keywords

Navigation