Fabrication of binder-free electrode using reinforced resorcinol formaldehyde-based carbon aerogels

  • Mohammad Aghabararpour
  • Siamak MotahariEmail author
  • Zeinab Sanaee
  • Ahmad Ghahreman
Research Paper


In this study, the electrochemical performance of the binder-free electrode based on the reinforced resorcinol formaldehyde (RF) carbon aerogels (CAs) was investigated for electric double layer capacitor (EDLC) application. Resorcinol formaldehyde aerogel (RF) was crosslinked using methylene diphenyl diisocyanate (MDI) and then pyrolyzed to produce carbon aerogel (CA). CA was subsequently activated using CO2 gas. The morphological changes due to the reinforcing and activation process were explored by SEM. The BET and BJH results showed an improvement in specific surface area and microporous volume. The CO2-activated CAs displayed up to twice more specific surface areas compared with the unactivated CAs. The compressive test verified an improvement of up to 5 times in the mechanical strength. In order to investigate the electrochemical performance, cyclic voltammetry (CV), charge/discharge (CD), and electrochemical impedance microscopy (EIS) were carried out. In an identical electrode weight, the specific capacity of binder-free electrodes increased about twice, in comparison with the common electrodes due to the removal of the binder and the collector. The highest specific capacitance among the fabricated samples was obtained for the reinforced and activated sample with resorcinol/catalyst (R/C) ratio of 700, which was equal to 55.5 F/g.


Binder-free electrode Reinforced RF Capacitance Electric double layer capacitor 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbas Q, Mirzaeian M, Ogwu AA, et al (2018) ScienceDirect Effect of physical activation / surface functional groups on wettability and electrochemical performance of carbon / activated carbon aerogels based electrode materials for electrochemical capacitors. Int J Hydrogen Energy 1–10.
  2. Aghabararpour M, Mohsenpour M, Motahari S, Abolghasemi A (2017) Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels. J Non-Cryst Solids:481, 548–555. 0–1. CrossRefGoogle Scholar
  3. Allahbakhsh A, Bahramian AR (2016) Novolac-derived carbon aerogels pyrolyzed at high temperatures: experimental and theoretical studies. RSC Adv 6:72777–72790. CrossRefGoogle Scholar
  4. Al-muhtaseb BSA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15:101–114CrossRefGoogle Scholar
  5. Alshrah M, Tran MP, Gong P, Naguib HE, Park CB (2017) Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions. J Colloid Interface Sci 485:65–74. CrossRefGoogle Scholar
  6. Alshrah M, Mark LH, Zhao C, Naguib HE, Park CB (2018) Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale 10:10564–10575. CrossRefGoogle Scholar
  7. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195:6964–6969. CrossRefGoogle Scholar
  8. Dawoud B, Amer E, Gross D (2007) Experimental investigation of an adsorptive thermal energy storage. Int J Energy Res 31:135–147. CrossRefGoogle Scholar
  9. Fang B, Binder L (2007) Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochim Acta 52:6916–6921. CrossRefGoogle Scholar
  10. Gao S, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2018) Dandelion-like nickel / cobalt metal-organic framework based electrode materials for high performance supercapacitors. J Colloid Interface Sci 531:83–90. CrossRefGoogle Scholar
  11. Garakani MA, Abouali S, Zhang B, Xu ZL, Huang J, Huang JQ, Heidari EK, Kim JK (2015) Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. J Mater Chem A 3:17827–17836. CrossRefGoogle Scholar
  12. González A, Goikolea E, Andoni J, Mysyk R (2016) Review on supercapacitors : technologies and materials. Renew Sust Energ Rev 58:1189–1206. CrossRefGoogle Scholar
  13. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473. CrossRefGoogle Scholar
  14. He G, Ling M, Han X et al (2017) Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Mater 9:119–125. CrossRefGoogle Scholar
  15. Hong JY, Wie JJ, Xu Y, Park HS (2015) Chemical modification of graphene aerogels for electrochemical capacitor applications. Phys Chem Chem Phys 17:30946–30962. CrossRefGoogle Scholar
  16. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342CrossRefGoogle Scholar
  17. Jae Y, Chul J, Yi J et al (2010) Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr Appl Phys 10:682–686. CrossRefGoogle Scholar
  18. Jia X, Dai B, Zhu Z, Wang J, Qiao W, Long D, Ling L (2016) Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon N Y 108:551–560. CrossRefGoogle Scholar
  19. Jin E, Jae Y, Kwon J et al (2015) Oxygen group-containing activated carbon aerogel as an electrode material for supercapacitor. Mater Res Bull 70:209–214. CrossRefGoogle Scholar
  20. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical and mechanical characterization of isocyanate-crosslinked amine-modified silica aerogels. Chem Mater 18:285–296CrossRefGoogle Scholar
  21. Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical. Mater Sci 40:725–731CrossRefGoogle Scholar
  22. Lee YJ, Jung JC, Yi J, Baeck SH, Yoon JR, Song IK (2010) Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr Appl Phys 10:682–686. CrossRefGoogle Scholar
  23. Lee YJ, Park HW, Park S, Song IK (2012a) Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Curr Appl Phys 12:233–237. CrossRefGoogle Scholar
  24. Lee YJ, Park HW, Park S, Song IK (2012b) Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor : effect of activation conditions. Nanosci Nanotechnol 12:6058–6064. CrossRefGoogle Scholar
  25. Lee YJ, Park HW, Hong UG, Song IK (2013) Characterization and electrochemical performance of graphene-containing carbon aerogel for supercapacitor. J Nanosci Nanotechnol 13:7944–7949. CrossRefGoogle Scholar
  26. Lee EJ, Lee YJ, Kim JK, Lee M, Yi J, Yoon JR, Song JC, Song IK (2015) Oxygen group-containing activated carbon aerogel as an electrode material for supercapacitor. Mater Res Bull 70:209–214. CrossRefGoogle Scholar
  27. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh AMM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960CrossRefGoogle Scholar
  28. Li W, Zhang B, Lin R, Ho-Kimura SM, He G, Zhou X, Hu J, Parkin IP (2018) A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv Funct Mater 1705937:1–10. CrossRefGoogle Scholar
  29. Lim MB, Hu M, Manandhar S, Sakshaug A, Strong A, Riley L, Pauzauskie PJ (2015) Ultrafast sol-gel synthesis of graphene aerogel materials. Carbon N Y 95:616–624. CrossRefGoogle Scholar
  30. Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim Acta 53:2210–2216. CrossRefGoogle Scholar
  31. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74. CrossRefGoogle Scholar
  32. Marx J, Brouschkin A, Roth S, Smazna D, Mishra YK, Wittich H, Schulte K, Adelung R, Fiedler B (2018) Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam — aerographite. Synth Met 235:145–152. CrossRefGoogle Scholar
  33. Michael AA, Nicholas L, Koebel MM (2011) Resorcinol-formaldehyde aerogels.Google Scholar
  34. Mudasar F, Katsura Y, Kitahara K, Kimura K (2019) Enhanced thermoelectric figure of merit by composite effects and low thermal conductivity in distrontium silicide ( Sr 2 Si ). J Alloys Compd 782:1031–1040. CrossRefGoogle Scholar
  35. Mulik S, Sotiriou-Leventis C, Leventis N (2006a) Acid-catalyzed time-efficient synthesis of resorcinol-aldehyde aerogels and crosslinking with isocyanates. Polym Prepr 47:364–365Google Scholar
  36. Mulik S, Sotiriou-leventis L, Leventis N (2006b) Acid-catalyzed time-efficient synthesis of resorcinol-formaldehyde aerogels and crosslinking with isocyanates. Polym Prepr 47:364–365Google Scholar
  37. Mulik S, Sotiriou-leventis C, Leventis N (2008) Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem Mater 20:6985–6997CrossRefGoogle Scholar
  38. Nystrom G, Marais A, Karabulut E et al (2015) Self-assembled three dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat Commun 6:7259. CrossRefGoogle Scholar
  39. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2014) Introduction to spectroscopy, 5th edn. Cengage LearningGoogle Scholar
  40. Qin CL, Lu X, Yin GP et al (2009) Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Trans Nonferrous Met Soc China (English Ed) 19:s738–s742. CrossRefGoogle Scholar
  41. Quan X, Fu Z, Yuan L, Zhong M, Mi R, Yang X, Yi Y, Wang C (2017) Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes †. RSC Adv 7:35875–35882. CrossRefGoogle Scholar
  42. Ramos-Fernández JM, Martínez-Escandell M, Rodríguez-Reinoso F (2008) Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon N Y 46:384–386. CrossRefGoogle Scholar
  43. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon N Y 47:195–200CrossRefGoogle Scholar
  44. Song Z, Duan H, Li L, Zhu D, Cao T, Lv Y, Xiong W, Wang Z, Liu M, Gan L (2019) High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem Eng J 372:1216–1225. CrossRefGoogle Scholar
  45. Tsuchiya T, Mori T, Iwamura S, Ogino I, Mukai SR (2014) Binderfree synthesis of high-surface-area carbon electrodes via CO 2 activation of resorcinol – formaldehyde carbon xerogel disks : analysis of activation process. Carbon N Y 76:1–10. CrossRefGoogle Scholar
  46. Van Aken KL, Pérez CR, Oh Y et al (2015) High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 15:662–669. CrossRefGoogle Scholar
  47. Wang H, Liu Y, Li M et al (2010) Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169. CrossRefGoogle Scholar
  48. Wang X, Liu L, Wang X, Bai L, Wu H, Zhang X, Yi L, Chen Q (2011) Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. J Solid State Electrochem 15:643–648. CrossRefGoogle Scholar
  49. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. CrossRefGoogle Scholar
  50. Wang C, Chen H, Lu S (2014) Manganese oxide / graphene aerogel composites as an outstanding supercapacitor electrode material. Chem A Eur J. CrossRefGoogle Scholar
  51. Yang MH, Jeong JM, Huh YS, Choi BG (2015) High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos Sci Technol 121:123–128. CrossRefGoogle Scholar
  52. Yang I, Kim S-G, Kwon SH, Kim MS, Jung JC (2017) Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochim Acta 223:21–30CrossRefGoogle Scholar
  53. Yang I, Kwon D, Kim MS, Jung JC (2018) A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon N Y 132:503–511. CrossRefGoogle Scholar
  54. Zhang G, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids 350:152–164CrossRefGoogle Scholar
  55. Zhang Y, Wen G, Fan S, Ma W, Li S, Wu T, Yu Z, Zhao B (2019) Alcoholic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with long-term cycle stability. Electrochim Acta 313:59–69. CrossRefGoogle Scholar
  56. Zhu C, Liu T, Qian F, Han TYJ, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:3448–3456. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mohammad Aghabararpour
    • 1
  • Siamak Motahari
    • 1
    Email author
  • Zeinab Sanaee
    • 2
  • Ahmad Ghahreman
    • 3
  1. 1.School of Chemical Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  2. 2.School of Electrical and Computer EngineeringUniversity of TehranTehranIran
  3. 3.The Robert M. Buchan Department of Mining EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations